BP神经网络需要训练的参数,bp神经网络建模步骤

本文探讨了使用MATLAB进行BP神经网络处理数据的问题,包括训练时间、训练次数的不稳定性以及遗传算法优化对预测精度的影响。提到了在建立BP神经网络预测模型的步骤,并指出BP网络在处理非线性问题中的应用和局限性,如训练样本数量、计算速度和定性定量结合的挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用MATLAB与BP神经网络法处理15组数据,共60个数据,需要多长时间

训练时长取决于训练算法、训练目标、样本数量和网络规模。你的样本只有15组,数量较少,一般几秒钟就能训练完成。

若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。

但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。

人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。

谷歌人工智能写作项目:神经网络伪原创

本人新手,在做BP神经网络的时候遇到了一个问题 5

不知你是不是用matlab的神经网络工具箱,因为一般神经网络都是成批处理的,每一次调整都会综合所有样本的误差进行调整,而不是一类一类图片的去调整,所以不会出现你说的现象文案狗

目前我看过的很多C++或者其它语言自己写的神经网络,都会有这样或那样的理解错误,建议先使用现成的matlab的神经网络工具箱进行训练。另外是输入的问题,图象一般会先提取特征,再将特征作为输入。

你在贴吧也提问了吧,这个我在贴吧里也回答了。

输出的问题,一般模式识别会用01向量来代表,例如你有三类,目标输出应该是[010]这样,来代表它是第2类,训练的时候用010,当然,预测到的可能是[0.10.90.1]这样。

这是我所想到的问题,楼主看看是不是这样一回事。下面是我的一些建议:改为用神经网络工具箱。借鉴《MATLAB神经网络原理与实例精解》里的基于概率神经网络的手写体数字识别,对图象作预处理。

参考20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值