《机器学习》周志华-CH4(决策树)

4.1基本流程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  决策树是一类常见的机器学习方法,又称“判别树”,决策过程最终结论对应了我们所希望的判定结果。

一棵决策树 { 一个根结点 包含样本全集 若干个内部结点 对应属性测试,每个结点包含的样本集合根据属性测试结果划分到子结点中 若干个叶结点 对应决策结果 一棵决策树 \begin{cases} 一个根结点 &包含样本全集 \\ 若干个内部结点 & 对应属性测试,每个结点包含的样本集合根据属性测试结果划分到子结点中 \\ 若干个叶结点 & 对应决策结果 \\ \end{cases} 一棵决策树 一个根结点若干个内部结点若干个叶结点包含样本全集对应属性测试,每个结点包含的样本集合根据属性测试结果划分到子结点中对应决策结果

  决策树的生成是一个递归过程

  有三种情况会递归返回
在这里插入图片描述

4.2划分选择

  关键在于如何选择最优划分属性

  我们希望决策树分支结点所包含的样本尽可能属同一类别,即“纯度”(purity)越来越高

4.2.1信息增益

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  “信息熵”(information entropy)是度量样本纯度的一种指标
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  学习一棵能预测是不是好瓜的决策树。 ∣ y ∣ = 2 |y|=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Next---YOLO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值