JVM_12 类加载与字节码技术 (类加载与类的加载器)

1.类加载阶段 

1.1 类加载阶段

  • 将类的字节码载入方法区中,内部采用 C++ 的 instanceKlass 描述 java 类,它的重要 field 有:
  • _java_mirror 即 java 的类镜像,例如对 String 来说,就是 String.class,作用是把 klass 暴 露给 java 使用
  • _super 即父类
  • _fields 即成员变量
  • _methods 即方法
  • _constants 即常量池
  • _class_loader 即类加载器
  • _vtable 虚方法表
  • _itable 接口方法表
  • 如果这个类还有父类没有加载,则先触发父类的加载。
  • 加载和链接可能是交替运行的。

注意

  • instanceKlass 这样的【元数据】是存储在方法区(1.8 后的元空间内),但 _java_mirror 是存储在堆中
  • 可以通过前面介绍的 HSDB 工具查看

 

 1.2  链接阶段

验证

验证类是否符合 JVM规范,安全性检查,阻止不合法的类继续运行。用 UE 等支持二进制的编辑器修改 HelloWorld.class的魔数,在控制台运行:

E:\git\jvm\out\production\jvm>java cn.itcast.jvm.t5.HelloWorld
Error: A JNI error has occurred, please check your installation and try again
Exception in thread "main" java.lang.ClassFormatError: Incompatible magic value
3405691578 in class file cn/itcast/jvm/t5/HelloWorld
        at java.lang.ClassLoader.defineClass1(Native Method)
        at java.lang.ClassLoader.defineClass(ClassLoader.java:763)
        at
java.security.SecureClassLoader.defineClass(SecureClassLoader.java:142)
        at java.net.URLClassLoader.defineClass(URLClassLoader.java:467)
        at java.net.URLClassLoader.access$100(URLClassLoader.java:73)
        at java.net.URLClassLoader$1.run(URLClassLoader.java:368)
        at java.net.URLClassLoader$1.run(URLClassLoader.java:362)
        at java.security.AccessController.doPrivileged(Native Method)
        at java.net.URLClassLoader.findClass(URLClassLoader.java:361)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
        at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
        at sun.launcher.LauncherHelper.checkAndLoadMain(LauncherHelper.java:495)

准备
为 static 变量分配空间,设置默认值

  • static 变量在 JDK 7 之前存储于 instanceKlass 末尾,从 JDK 7 开始,存储于 _java_mirror 末尾
  • static 变量分配空间和赋值是两个步骤,分配空间在准备阶段完成,赋值在初始化阶段完成
  • 如果 static 变量是 final 的基本类型,以及字符串常量,那么编译阶段值就确定了,赋值在准备阶段完成
  • 如果 static 变量是 final 的,但属于引用类型,那么赋值也会在初始化阶段完成
     

解析
将常量池中的符号引用解析为直接引用 

package cn.itcast.jvm.t3.load;
/**
* 解析的含义
*/
public class Load2 {
  public static void main(String[] args) throws ClassNotFoundException,
IOException {
    ClassLoader classloader = Load2.class.getClassLoader();
    // loadClass 方法不会导致类的解析和初始化
    Class<?> c = classloader.loadClass("cn.itcast.jvm.t3.load.C");
   
    // new C();
    System.in.read();
 }
}
class C {
  D d = new D();
}
class D {
}

1.3 初始化阶段

< init()> V 方法

初始化即调用 < cinit>()V ,虚拟机会保证这个类的『构造方法』的线程安全。

发生的时机

概括得说,类初始化是【懒惰的】

  • main 方法所在的类,总会被首先初始化
  • 首次访问这个类的静态变量或静态方法时
  • 子类初始化,如果父类还没初始化,会引发
  • 子类访问父类的静态变量,只会触发父类的初始化
  • Class.forName
  • new 会导致初始化

不会导致类初始化的情况:

  • 访问类的 static final 静态常量(基本类型和字符串)不会触发初始化
  • 类对象.class 不会触发初始化
  • 创建该类的数组不会触发初始化
  • 类加载器的 loadClass 方法

测试代码:

class A {
    static int a = 0;
    static {
    	System.out.println("a init");
    }
}

class B extends A {
    final static double b = 5.0;
    static boolean c = false;
    static {
    	System.out.println("b init");
    }
}

 验证(测试时请先全部注释,每次只执行其中一个)

public class Load3 {
    // main方法的所在类总会被先初始化
    static {
    	System.out.println("main init");
    }
    public static void main(String[] args) throws ClassNotFoundException {
        // 1. 静态常量(基本类型和字符串)不会触发初始化
        System.out.println(B.b);
        // 2. 类对象.class 不会触发初始化
        System.out.println(B.class);
        // 3. 创建该类的数组不会触发初始化
        System.out.println(new B[0]);
        // 4. 不会初始化类 B,但会加载 B、A
        ClassLoader cl = Thread.currentThread().getContextClassLoader();
        cl.loadClass("cn.itcast.jvm.t3.B");
        // 5. 不会初始化类 B,但会加载 B、A
        ClassLoader c2 = Thread.currentThread().getContextClassLoader();
        Class.forName("cn.itcast.jvm.t3.B", false, c2);
        // 1. 首次访问这个类的静态变量或静态方法时
        System.out.println(A.a);
        // 2. 子类初始化,如果父类还没初始化,会引发
        System.out.println(B.c);
        // 3. 子类访问父类静态变量,只触发父类初始化
        System.out.println(B.a);
        // 4. 会初始化类 B,并先初始化类 A
        Class.forName("cn.itcast.jvm.t3.B");
    }
}

1.4 练习

从字节码分析,使用 a,b,c 这三个常量是否会导致 E 初始化:

public class Load4 {
    public static void main(String[] args) {
        System.out.println(E.a);
        System.out.println(E.b);
        System.out.println(E.c);
    }
}

class E {
    public static final int a = 10;
    public static final String b = "hello";
    public static final Integer c = 20;
}

典型应用 - 完成懒惰初始化单例模式:

public final class Singleton {
    private Singleton() { }
    // 内部类中保存单例
    private static class LazyHolder {
        static final Singleton INSTANCE = new Singleton();
    }
    // 第一次调用 getInstance 方法,才会导致内部类加载和初始化其静态成员
    public static Singleton getInstance() {
    	return LazyHolder.INSTANCE;
    }
}

以上的实现特点是:

  • 懒惰实例化
  • 初始化时的线程安全是有保障的

2. 类加载器

以 JDK 8 为例:

类加载器的优先级(由高到低):启动类加载器 -> 扩展类加载器 -> 应用程序类加载器 -> 自定义类加载器

2.1 启动类加载器

用 Bootstrap 类加载器加载类:

package cn.itcast.jvm.t3.load;

public class F {
    static {
   		System.out.println("bootstrap F init");
    }
}

执行:

package cn.itcast.jvm.t3.load;

public class Load5_1 {
    public static void main(String[] args) throws ClassNotFoundException {
        Class<?> aClass = Class.forName("cn.itcast.jvm.t3.load.F");
        // aClass.getClassLoader():获得aClass对应的类加载器
        System.out.println(aClass.getClassLoader());
    }
}

输出:

E:\git\jvm\out\production\jvm>java -Xbootclasspath/a:. cn.itcast.jvm.t3.load.Load5
bootstrap F init
null
  • -Xbootclasspath 表示设置 bootclasspath
  • 其中 /a:. 表示将当前目录追加至 bootclasspath 之后
  • 可以有以下几个方式替换启动类路径下的核心类:
    • java -Xbootclasspath: < new bootclasspath>
    • 前追加:java -Xbootclasspath/a:<追加路径>
    • 后追加:java -Xbootclasspath/p:<追加路径>

2.2 扩展类加载器

package cn.itcast.jvm.t3.load;

public class G {
    static {
    	System.out.println("classpath G init");
    }
}

程序执行:

public class Load5_2 {
    public static void main(String[] args) throws ClassNotFoundException {
        Class<?> aClass = Class.forName("cn.itcast.jvm.t3.load.G");
        System.out.println(aClass.getClassLoader());
    }
}

输出结果:

classpath G init
sun.misc.Launcher$AppClassLoader@18b4aac2 // 这个类是由应用程序加载器加载

写一个同名的类:

package cn.itcast.jvm.t3.load;

public class G {
    static {
    	System.out.println("ext G init");
    }
}

打个 jar 包:

E:\git\jvm\out\production\jvm>jar -cvf my.jar cn/itcast/jvm/t3/load/G.class // 将G.class打jar包
已添加清单
正在添加: cn/itcast/jvm/t3/load/G.class(输入 = 481) (输出 = 322)(压缩了 33%)

将 jar 包拷贝到JAVA_HOME/jre/lib/ext扩展类加载器加载的类必须是以jar包方式存在),重新执行 Load5_2

输出:

ext G init
sun.misc.Launcher$ExtClassLoader@29453f44 // 这个类是由扩展类加载器加载

2.3 双亲委派模式

所谓的双亲委派,就是指调用类加载器的 loadClass 方法时,查找类的规则。

注意:这里的双亲,翻译为上级似乎更为合适,因为它们并没有继承关系 

protected Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException {
    synchronized (getClassLoadingLock(name)) {
        // 1. 检查该类是否已经加载
        Class<?> c = findLoadedClass(name);
        if (c == null) {
            long t0 = System.nanoTime();
            try {
                if (parent != null) {
                    // 2. 有上级的话,委派上级 loadClass
                    c = parent.loadClass(name, false);
                } else {
                    // 3. 如果没有上级了(ExtClassLoader),则委派
                    BootstrapClassLoader
                    c = findBootstrapClassOrNull(name);
                }
            } catch (ClassNotFoundException e) {
            }
            if (c == null) {
                long t1 = System.nanoTime();
                // 4. 每一层找不到,调用 findClass 方法(每个类加载器自己扩展)来加载
                c = findClass(name);
                // 5. 记录耗时
                sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                sun.misc.PerfCounter.getFindClasses().increment();
            }
        }
        if (resolve) {
        	resolveClass(c);
        }
        return c;
    }
}

 例如:

public class Load5_3 {
    public static void main(String[] args) throws ClassNotFoundException {
        Class<?> aClass = Load5_3.class.getClassLoader()
        			.loadClass("cn.itcast.jvm.t3.load.H");
        System.out.println(aClass.getClassLoader());
    }
}

执行流程为:

  • sun.misc.Launcher$AppClassLoader // 1 处, 开始查看已加载的类,结果没有
  • sun.misc.Launcher$AppClassLoader // 2 处,委派上级 sun.misc.Launcher$ExtClassLoader.loadClass()
  • sun.misc.Launcher$ExtClassLoader // 1 处,查看已加载的类,结果没有
  • sun.misc.Launcher$ExtClassLoader // 3 处,没有上级了,则委派 BootstrapClassLoader 查找
  • BootstrapClassLoader 是在 JAVA_HOME/jre/lib 下找 H 这个类,显然没有
  • sun.misc.Launcher$ExtClassLoader // 4 处,调用自己的 findClass 方法,是在JAVA_HOME/jre/lib/ext 下找 H 这个类,显然没有,回到 sun.misc.Launcher$AppClassLoader 的 // 2 处
  • 继续执行到 sun.misc.Launcher$AppClassLoader // 4 处,调用它自己的 findClass 方法,在 classpath 下查找,找到了
     

2.4 线程上下文类加载器 

我们在使用 JDBC 时,都需要加载 Driver 驱动,不知道你注意到没有,不写Class.forName("com.mysql.jdbc.Driver")也是可以让 com.mysql.jdbc.Driver 正确加载的,你知道是怎么做的吗? 让我们追踪一下源码:

public class DriverManager {
    // 注册驱动的集合
    private final static CopyOnWriteArrayList<DriverInfo> registeredDrivers 
        = new CopyOnWriteArrayList<>();
    
    // 初始化驱动
    static {
        loadInitialDrivers();
        println("JDBC DriverManager initialized");
    }

先不看别的,看看 DriverManager 的类加载器:

System.out.println(DriverManager.class.getClassLoader());

打印 null,表示它的类加载器是 Bootstrap ClassLoader,会到 JAVA_HOME/jre/lib 下搜索类,但 JAVA_HOME/jre/lib 下显然没有 mysql-connector-java-5.1.47.jar 包,这样问题来了,在 DriverManager 的静态代码块中,怎么能正确加载?

继续看 loadInitialDrivers() 方法:

private static void loadInitialDrivers() {
    String drivers;
    try {
        drivers = AccessController.doPrivileged(new PrivilegedAction<String>() {
            public String run() {
            	return System.getProperty("jdbc.drivers");
            }
        });
    } catch (Exception ex) {
    	drivers = null;
    }
    // 1)使用 ServiceLoader 机制加载驱动,即 SPI
    AccessController.doPrivileged(new PrivilegedAction<Void>() {
    	public Void run() {
            ServiceLoader<Driver> loadedDrivers = ServiceLoader.load(Driver.class);
            Iterator<Driver> driversIterator = loadedDrivers.iterator();
            try{
                while(driversIterator.hasNext()) {
                    driversIterator.next();
                }
            } catch(Throwable t) {
                // Do nothing
            }
            return null;
        }
    });
    println("DriverManager.initialize: jdbc.drivers = " + drivers);
    
    // 2)使用 jdbc.drivers 定义的驱动名加载驱动
    if (drivers == null || drivers.equals("")) {
    	return;
    }
    String[] driversList = drivers.split(":");
    println("number of Drivers:" + driversList.length);
    for (String aDriver : driversList) {
        try {
            println("DriverManager.Initialize: loading " + aDriver);
            // 这里的 ClassLoader.getSystemClassLoader() 就是应用程序类加载器
            Class.forName(aDriver, true, ClassLoader.getSystemClassLoader());
        } catch (Exception ex) {
        	println("DriverManager.Initialize: load failed: " + ex);
        }
    }
}

先看 2)发现它最后是使用 Class.forName 完成类的加载和初始化,关联的是应用程序类加载器,因此 可以顺利完成类加载

再看 1)它就是大名鼎鼎的 Service Provider Interface (SPI)

约定如下,在 jar 包的 META-INF/services 包下,以接口全限定名名为文件,文件内容是实现类名称

这样就可以使用:

ServiceLoader<接口类型> allImpls = ServiceLoader.load(接口类型.class);
Iterator<接口类型> iter = allImpls.iterator();
while(iter.hasNext()) {
	iter.next();
}

来得到实现类,体现的是【面向接口编程+解耦】的思想,在下面一些框架中都运用了此思想:

  • JDBC
  • Servlet 初始化器
  • Spring 容器
  • Dubbo(对 SPI 进行了扩展)

接着看 ServiceLoader.load 方法:

public static <S> ServiceLoader<S> load(Class<S> service) {
    // 获取线程上下文类加载器
    ClassLoader cl = Thread.currentThread().getContextClassLoader();
    return ServiceLoader.load(service, cl);
}

线程上下文类加载器是当前线程使用的类加载器,默认就是应用程序类加载器,它内部又是由 Class.forName 调用了线程上下文类加载器完成类加载,具体代码在 ServiceLoader 的内部类 LazyIterator 中:

private S nextService() {
    if (!hasNextService())
    	throw new NoSuchElementException();
    String cn = nextName;
    nextName = null;
    Class<?> c = null;
    try {
    	c = Class.forName(cn, false, loader);
    } catch (ClassNotFoundException x) {
        fail(service, "Provider " + cn + " not found");
    }
    if (!service.isAssignableFrom(c)) {
        fail(service, "Provider " + cn + " not a subtype");
    }
    try {
        S p = service.cast(c.newInstance());
        providers.put(cn, p);
        return p;
    } catch (Throwable x) {
        fail(service, "Provider " + cn + " could not be instantiated", x);
    }
    throw new Error(); // This cannot happen
}

2.5 自定义类加载器

问问自己,什么时候需要自定义类加载器:

1)想加载非 classpath 随意路径中的类文件
2)都是通过接口来使用实现,希望解耦时,常用在框架设计
3)这些类希望予以隔离,不同应用的同名类都可以加载,不冲突,常见于 tomcat 容器
步骤:

  • 继承 ClassLoader 父类
  • 要遵从双亲委派机制,重写 findClass 方法 注意不是重写 loadClass 方法,否则不会走双亲委派机制
  • 读取类文件的字节码
  • 调用父类的 defineClass 方法来加载类
  • 使用者调用该类加载器的 loadClass 方法
     

 3 运行期优化

 3.1即时编译
分层编译(TieredCompilation)
例子:

public class JIT1 {
  public static void main(String[] args) {
    for (int i = 0; i < 200; i++) {
      long start = System.nanoTime();
      for (int j = 0; j < 1000; j++) {
        new Object();
     }
      long end = System.nanoTime();
      System.out.printf("%d\t%d\n",i,(end - start));
   }
 }
}
0 96426
1 52907
2 44800
3 119040
4 65280
5 47360
6 45226
7 47786
8 48640
9 60586
10 42667
11 48640
12 70400
13 49920
14 49493
15 45227
16 45653
17 60160
18 58880
19 46080
20 47787
21 49920
22 54187
23 57173
24 50346
25 52906
26 50346
27 47786
28 49920
29 64000
30 49067
31 63574
32 63147
33 56746
34 49494
35 64853
36 107520
37 46933
38 51627
39 45653
40 103680
41 51626
42 60160
43 49067
44 45653
45 49493
46 51626
47 49066
48 47360
49 50774
50 70827
51 64000
52 72107
53 49066
54 46080
55 44800
56 46507
57 73813
58 61013
59 57600
60 83200
61 7024204
62 49493
63 20907
64 20907
65 20053
66 20906
67 20907
68 21333
69 22187
70 20480
71 21760
72 19200
73 15360
74 18347
75 19627
76 17067
77 34134
78 19200
79 18347
80 17493
81 15360
82 18774
83 17067
84 21760
85 23467
86 17920
87 17920
88 18774
89 18773
90 19200
91 20053
92 18347
93 22187
94 17920
95 18774
96 19626
97 33280
98 20480
99 20480
100 18773
101 47786
102 17493
103 22614
104 64427
105 18347
106 19200
107 26027
108 21333
109 20480
110 24747
111 32426
112 21333
113 17920
114 17920
115 19200
116 18346
117 15360
118 24320
119 19200
120 20053
121 17920
122 18773
123 20053
124 18347
125 18347
126 22613
127 18773
128 19627
129 20053
130 20480
131 19627
132 20053
133 15360
134 136533
135 43093
136 853
137 853
138 853
139 853
140 854
141 853
142 853
143 853
144 853
145 853
146 853
147 854
148 853
149 853
150 854
151 853
152 853
153 853
154 1280
155 853
156 853
157 854
158 853
159 853
160 854
161 854
162 853
163 854
164 854
165 854
166 854
167 853
168 853
169 854
170 853
171 853
172 853
173 1280
174 853
175 1280
176 853
177 854
178 854
179 427
180 853
181 854
182 854
183 854
184 853
185 853
186 854
187 853
188 853
189 854
190 1280
191 853
192 853
193 853
194 853
195 854
196 853

原因是什么呢?
JVM 将执行状态分成了 5 个层次:

  • 0 层,解释执行(Interpreter)
  • 1 层,使用 C1 即时编译器编译执行(不带 profiling)
  • 2 层,使用 C1 即时编译器编译执行(带基本的 profiling)
  • 3 层,使用 C1 即时编译器编译执行(带完全的 profiling)
  • 4 层,使用 C2 即时编译器编译执行

profiling 是指在运行过程中收集一些程序执行状态的数据,例如【方法的调用次数】,【循环的回边次数】等 

即时编译器(JIT)与解释器的区别 

  • 解释器是将字节码解释为机器码,下次即使遇到相同的字节码,仍会执行重复的解释
  • JIT 是将一些字节码编译为机器码,并存入 Code Cache,下次遇到相同的代码,直接执行,无需再编译
  • 解释器是将字节码解释为针对所有平台都通用的机器码
  • JIT 会根据平台类型,生成平台特定的机器码

对于占据大部分的不常用的代码,我们无需耗费时间将其编译成机器码,而是采取解释执行的方式运行;另一方面,对于仅占据小部分的热点代码,我们则可以将其编译成机器码,以达到理想的运行速度。 执行效率上简单比较一下 Interpreter < C1 < C2,总的目标是发现热点代码(hotspot名称的由来),优化之 

刚才的一种优化手段称之为【逃逸分析】,发现新建的对象是否逃逸。可以使用 -XX:-
DoEscapeAnalysis 关闭逃逸分析,再运行刚才的示例观察结果

参考资料:https://docs.oracle.com/en/java/javase/12/vm/java-hotspot-virtual-machine-performance-enhancements.html#GUID-D2E3DC58-D18B-4A6C-8167-4A1DFB4888E4 

3.2方法内联 

private static int square(final int i) {
  return i * i;
}
System.out.println(square(9));

如果发现 square 是热点方法,并且长度不太长时,会进行内联,所谓的内联就是把方法内代码拷贝、粘贴到调用者的位置:

System.out.println(9 * 9);

还能够进行常量折叠(constant folding)的优化

System.out.println(81);

实验:

public class JIT2 {
  // -XX:+UnlockDiagnosticVMOptions -XX:+PrintInlining (解锁隐藏参数)打印
inlining 信息
  // -XX:CompileCommand=dontinline,*JIT2.square 禁止某个方法 inlining
  // -XX:+PrintCompilation 打印编译信息
  public static void main(String[] args) {
    int x = 0;
    for (int i = 0; i < 500; i++) {
      long start = System.nanoTime();
      for (int j = 0; j < 1000; j++) {
        x = square(9);
     }
      long end = System.nanoTime();
      System.out.printf("%d\t%d\t%d\n",i,x,(end - start));
   }
 }
  private static int square(final int i) {
    return i * i;
 }
}

3.3字段优化

http://JMH 基准测试请参考:http://openjdk.java.net/projects/code-tools/jmh/

 创建 maven 工程,添加依赖如下

<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-core</artifactId>
<version>${jmh.version}</version>
</dependency>
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-generator-annprocess</artifactId>
<version>${jmh.version}</version>
<scope>provided</scope>
</dependency>

编写基准测试代码:

package test;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.runner.Runner;
import org.openjdk.jmh.runner.RunnerException;
import org.openjdk.jmh.runner.options.Options;
import org.openjdk.jmh.runner.options.OptionsBuilder;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;
@Warmup(iterations = 2, time = 1)
@Measurement(iterations = 5, time = 1)
@State(Scope.Benchmark)
public class Benchmark1 {
  int[] elements = randomInts(1_000);
  private static int[] randomInts(int size) {
    Random random = ThreadLocalRandom.current();
    int[] values = new int[size];
    for (int i = 0; i < size; i++) {
      values[i] = random.nextInt();
   }
    return values;
 }
  @Benchmark
  public void test1() {
    for (int i = 0; i < elements.length; i++) {
      doSum(elements[i]);
   }
 }
  @Benchmark
  public void test2() {
    int[] local = this.elements;
    for (int i = 0; i < local.length; i++) {
      doSum(local[i]);
   }
 }
  @Benchmark
  public void test3() {
    for (int element : elements) {
      doSum(element);
   }
 }
  static int sum = 0;
  @CompilerControl(CompilerControl.Mode.INLINE)
  static void doSum(int x) {
    sum += x;
 }
  public static void main(String[] args) throws RunnerException {
    Options opt = new OptionsBuilder()
       .include(Benchmark1.class.getSimpleName())
       .forks(1)
       .build();
    new Runner(opt).run();
    }
}

首先启用 doSum 的方法内联,测试结果如下(每秒吞吐量,分数越高的更好):

Benchmark       Mode Samples    Score Score error Units
t.Benchmark1.test1  thrpt    5 2420286.539  390747.467 ops/s
t.Benchmark1.test2  thrpt    5 2544313.594  91304.136 ops/s
t.Benchmark1.test3  thrpt    5 2469176.697  450570.647 ops/s

接下来禁用 doSum 方法内联

@CompilerControl(CompilerControl.Mode.DONT_INLINE)
static void doSum(int x) {
  sum += x;
}

测试结果如下:

Benchmark       Mode Samples    Score Score error Units
t.Benchmark1.test1  thrpt    5 296141.478  63649.220 ops/s
t.Benchmark1.test2  thrpt    5 371262.351  83890.984 ops/s
t.Benchmark1.test3  thrpt    5 368960.847  60163.391 ops/s

分析:
在刚才的示例中,doSum 方法是否内联会影响 elements 成员变量读取的优化:
如果 doSum 方法内联了,刚才的 test1 方法会被优化成下面的样子(伪代码):

@Benchmark
public void test1() {
  // elements.length 首次读取会缓存起来 -> int[] local
  for (int i = 0; i < elements.length; i++) { // 后续 999 次 求长度 <- local
    sum += elements[i]; // 1000 次取下标 i 的元素 <- local
 }
}

可以节省 1999 次 Field 读取操作
但如果 doSum 方法没有内联,则不会进行上面的优化

4. 反射优化

package cn.itcast.jvm.t3.reflect;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
public class Reflect1 {
  public static void foo() {
    System.out.println("foo...");
 }
  public static void main(String[] args) throws Exception {
    Method foo = Reflect1.class.getMethod("foo");
    for (int i = 0; i <= 16; i++) {
      System.out.printf("%d\t", i);
      foo.invoke(null);
   }
    System.in.read();
 }
}

foo.invoke 前面 0 ~ 15 次调用使用的是 MethodAccessor 的 NativeMethodAccessorImpl 实现

package sun.reflect;
import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import sun.reflect.misc.ReflectUtil;
class NativeMethodAccessorImpl extends MethodAccessorImpl {
  private final Method method;
  private DelegatingMethodAccessorImpl parent;
  private int numInvocations;
  NativeMethodAccessorImpl(Method method) {
    this.method = method;
 }
  public Object invoke(Object target, Object[] args)
    throws IllegalArgumentException, InvocationTargetException {
    // inflationThreshold 膨胀阈值,默认 15
    if (++this.numInvocations > ReflectionFactory.inflationThreshold()
      && !ReflectUtil.isVMAnonymousClass(this.method.getDeclaringClass()))
{
      // 使用 ASM 动态生成的新实现代替本地实现,速度较本地实现快 20 倍左右
      MethodAccessorImpl generatedMethodAccessor =
       (MethodAccessorImpl)
         (new MethodAccessorGenerator())
           .generateMethod(
              this.method.getDeclaringClass(),
              this.method.getName(),
              this.method.getParameterTypes(),
              this.method.getReturnType(),
              this.method.getExceptionTypes(),
              this.method.getModifiers()
           );
      this.parent.setDelegate(generatedMethodAccessor);
   }
    // 调用本地实现
    return invoke0(this.method, target, args);
 }
  void setParent(DelegatingMethodAccessorImpl parent) {
    this.parent = parent;
 }
  private static native Object invoke0(Method method, Object target, Object[]
args);
}

当调用到第 16 次(从0开始算)时,会采用运行时生成的类代替掉最初的实现,可以通过 debug 得到类名为 sun.reflect.GeneratedMethodAccessor1
可以使用阿里的 arthas 工具:

java -jar arthas-boot.jar
[INFO] arthas-boot version: 3.1.1
[INFO] Found existing java process, please choose one and hit RETURN.
* [1]: 13065 cn.itcast.jvm.t3.reflect.Reflect1

选择 1 回车表示分析该进程

1
[INFO] arthas home: /root/.arthas/lib/3.1.1/arthas
[INFO] Try to attach process 13065
[INFO] Attach process 13065 success.
[INFO] arthas-client connect 127.0.0.1 3658
,---. ,------. ,--------.,--. ,--. ,---.  ,---.             
/ O \ | .--. ''--. .--'| '--' | / O \ '  .-'             
| .-. || '--'.'  | |  | .--. || .-. |`. `-.             
| | | || |\ \  | |  | | | || | | |.-'  |            
`--' `--'`--' '--'  `--'  `--' `--'`--' `--'`-----'             
                                       
wiki   https://alibaba.github.io/arthas                   
tutorials https://alibaba.github.io/arthas/arthas-tutorials          
version  3.1.1                                
pid    13065                                
time   2019-06-10 12:23:54 

再输入【jad + 类名】来进行反编译

$ jad sun.reflect.GeneratedMethodAccessor1
ClassLoader:                                  
                                 
+-sun.reflect.DelegatingClassLoader@15db9742                  
                                 
 +-sun.misc.Launcher$AppClassLoader@4e0e2f2a                 
                                 
  +-sun.misc.Launcher$ExtClassLoader@2fdb006e                
                                 
Location:                                   
                                 
                                       
                                 
/*
* Decompiled with CFR 0_132.
*
* Could not load the following classes:
* cn.itcast.jvm.t3.reflect.Reflect1
*/
package sun.reflect;
import cn.itcast.jvm.t3.reflect.Reflect1;
import java.lang.reflect.InvocationTargetException;
import sun.reflect.MethodAccessorImpl;
public class GeneratedMethodAccessor1
extends MethodAccessorImpl {
  /*
  * Loose catch block
  * Enabled aggressive block sorting
  * Enabled unnecessary exception pruning
  * Enabled aggressive exception aggregation
  * Lifted jumps to return sites
  */
注意
通过查看 ReflectionFactory 源码可知
sun.reflect.noInflation 可以用来禁用膨胀(直接生成 GeneratedMethodAccessor1,但首
次生成比较耗时,如果仅反射调用一次,不划算)
sun.reflect.inflationThreshold 可以修改膨胀阈值
  public Object invoke(Object object, Object[] arrobject) throws
InvocationTargetException {
    // 比较奇葩的做法,如果有参数,那么抛非法参数异常
    block4 : {
      if (arrobject == null || arrobject.length == 0) break block4;
      throw new IllegalArgumentException();
   }
    try {
      // 可以看到,已经是直接调用了
      Reflect1.foo();
      // 因为没有返回值
      return null;
   }
    catch (Throwable throwable) {
      throw new InvocationTargetException(throwable);
   }
    catch (ClassCastException | NullPointerException runtimeException) {
      throw new IllegalArgumentException(Object.super.toString());
   }
 }
}
Affect(row-cnt:1) cost in 1540 ms.

注意
通过查看 ReflectionFactory 源码可知

  • sun.reflect.noInflation 可以用来禁用膨胀(直接生成 GeneratedMethodAccessor1,但首次生成比较耗时,如果仅反射调用一次,不划算)
  • sun.reflect.inflationThreshold 可以修改膨胀阈值
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值