
NLP:好像懂了又好像没懂又好像懂了
文章平均质量分 97
HicSuntLeones
狙う前に触りたいな
展开
-
【AAAI2020 论文笔记】HopRetriever:通过 Hop 检索回答开放领域的复杂多跳问题
HopRetriever:Retrieve Hops over Wikipedia to Answer Complex Questions ; Shaobo Li, Xiaoguang Li, Lifeng Shang, Xin Jiang,Qun Liu, Chengjie Sun, Zhenzhou Ji, Bingquan Liu; Harbin Institute of Technology; Huawei Noah’s Ark Lab原文:https://arxiv.org/pdf/201.原创 2021-09-22 03:27:25 · 422 阅读 · 0 评论 -
【ICLR2020 论文笔记】可用于文本推理的模块神经网络( Neural Module Networks + NLP + reasoning)
Neural Module Networks for Reasoning over Text ; Nitish Gupta, Kevin Lin, Dan Roth, Sameer Singh & Matt Gardner; University of Pennsylvania, Philadelphia, University of California, Berkeley, University of California, Irvine, Allen Institute for AI原文.原创 2021-07-06 04:08:50 · 877 阅读 · 0 评论 -
【ACL16 论文笔记】Harnessing Deep Neural Networks with Logic Rules:结合逻辑规则的深层神经网络
Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, Eric P. Xing, School of Computer Science, Carnegie Mellon University ; Harnessing Deep Neural Networks with Logic Rules原文:https://arxiv.org/pdf/1603.06318v6.pdf源码:(更贴切来说是一个官方应用案例)https://github.com/Zhi.原创 2021-04-06 01:18:09 · 835 阅读 · 1 评论 -
【EMNLP20 论文笔记】HGN:基于分层图网络的多跳阅读理解模型
Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuohang Wang, Jingjing LiuMicrosoft Dynamics 365 AI Research; Hierarchical Graph Network for Multi-hop Question Answering原文:https://arxiv.org/pdf/1911.03631.pdf源码:https://github.com/yuwfan/HGN (official **.原创 2021-03-30 00:02:15 · 1189 阅读 · 0 评论 -
【ACL20 论文笔记】CorefQA:基于QA模式(提出问题 + 片段预测)的共指消解 / 指代消解模型
Wei Wu, Fei Wang, Arianna Yuan, Fei Wu and Jiwei Li, Department of Computer Science and Technology, Zhejiang University Computer Science Department, Stanford University, ShannonAI; CorefQA: Coreference Resolution as Query-based Span Prediction论文原文:https.原创 2021-03-19 01:21:55 · 566 阅读 · 0 评论 -
【ACL19 论文笔记】EPAr:探索+提议+组装:多跳阅读理解的可解释模型
Yichen Jiang, Nitish Joshi, Yen-Chun Chen Mohit Bansal ; UNC Chapel Hill Explore, Propose, and Assemble: An Interpretable Model for Multi-Hop Reading Comprehension论文原文:https://arxiv.org/pdf/1906.05210.pdf源码:https://github.com/jiangycTarheel/EPAr文章目录.原创 2021-03-18 02:06:57 · 700 阅读 · 0 评论 -
【论文笔记】Retro-Reader:基于回溯式阅读器的机器阅读理解模型
Zhuosheng Zhang, Junjie Yang, Hai Zhao, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Retrospective Reader for Machine Reading Comprehension论文原文:https://arxiv.org/pdf/2001.09694v4.pdf源码:https://github.com/cooelf/Awesome.原创 2021-03-17 02:13:31 · 1242 阅读 · 2 评论 -
【ACL19 论文笔记】KAR:实现机器阅读理解中对常识知识的显示应用
Chao Wang and Hui Jiang, Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Explicit Utilization of General Knowledge in Machine Reading Comprehension论文原文:https://arxiv.org/pdf/1809.03449v3.pdf.原创 2021-03-13 02:39:37 · 613 阅读 · 0 评论 -
【ACL20 论文笔记】Self-Training MRC (STM):基于软证据提取的机器阅读理解自训练方法
Yilin Niu, Fangkai Jiao, Mantong Zhou, Ting Yao, Jingfang Xu, Minlie Huang, A Self-Training Method for Machine Reading Comprehension with Soft Evidence Extraction论文原文:https://arxiv.org/pdf/2005.05189.pdf源代码:https://github.com/SparkJiao/Self-Training-MR.原创 2021-03-12 02:47:14 · 321 阅读 · 0 评论 -
【ACL19 论文笔记】AGGCN:基于注意力导向图卷积神经网络的关系提取模型
guaZhijiang Guo, Yan Zhang and Wei Lu, StatNLP Research Group, Singapore University of Technology and Design; Attention Guided Graph Convolutional Networks for Relation Extraction论文原文:https://arxiv.org/pdf/1906.07510v8.pdf源码:https://github.com/Cartus/原创 2021-03-11 01:57:31 · 1258 阅读 · 0 评论 -
【ACL19 论文笔记】KT-NET:结合丰富知识增强预训练语言表达以辅助机器阅读理解
An Yang, Quan Wang, Jing Liu, Kai Liu, Yajuan Lyu, Hua Wu, Qiaoqiao She and Sujian Li; Key Laboratory of Computational Linguistics, Peking University, MOE, China, Baidu Inc., Beijing, China; Enhancing Pre-Trained Language Representations with Rich Knowle.原创 2021-03-06 02:44:22 · 708 阅读 · 0 评论 -
【ACL19 论文笔记】HDEGraph:基于异构图推理实现跨文档的多跳阅读理解
Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, Bowen ZhouJD AI Research; Multi-hop Reading Comprehension across Multiple Documents by Reasoning over Heterogeneous Graphs论文原文:https://arxiv.org/pdf/1905.07374v2.pdf源码:https://github.com/JD-A.原创 2021-03-05 01:54:31 · 589 阅读 · 7 评论 -
【ACL19 论文笔记】CogQA:基于认知图谱的多跳阅读理解
Ming Ding, Chang Zhou, Qibin Chen, Hongxia Yang, Jie Tang, Department of Computer Science and Technology, Tsinghua University, DAMO Academy, Alibaba GroupCognitive Graph for Multi-Hop Reading Comprehension at Scale论文原文:https://arxiv.org/pdf/1905.05460v.原创 2021-03-04 01:00:57 · 1144 阅读 · 2 评论 -
【ACL19 论文笔记】RE3QA:检索+阅读+重新排序:端到端的多文档阅读理解
Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, National University of Defense Technology, Changsha, China (ACL19) Retrieve, Read, Rerank: Towards End-to-End Multi-Document Reading Comprehension原论文:https://arxiv.org/pdf/1906.04618.pdf源码:https://gith.原创 2021-03-03 01:37:17 · 624 阅读 · 0 评论