目标跟踪之KCF详解

本文介绍了使用内核化相关滤波器(KCF)进行高速目标跟踪的方法,通过优化数据表示并利用核方法降低计算复杂度。KCF在处理图像变化时表现出色,且实现简洁,对比其他顶级跟踪器如Struck和TLD有更好性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

High-Speed Tracking with Kernelized Correlation Filters

使用内核化相关滤波器进行高速跟踪

        大多数现代跟踪器的核心组件是判别分类器,其任务是区分目标和周围环境。为了应对自然图像变化,此分类器通常使用平移和缩放的样本补丁进行训练。此类样本集充斥着冗余 - 任何重叠的像素都被限制为相同。基于这个简单的观察,我们提出了一个包含数千个翻译补丁的数据集的分析模型。通过证明生成的数据矩阵是循环的,我们可以用离散傅里叶变换对其进行对角化,从而将存储和计算减少几个数量级。有趣的是,对于线性回归,我们的公式相当于一个相关滤波器,被一些最快的竞争跟踪器使用。然而,对于核回归,我们推导了一个新的核化相关滤波器(KCF),与其他核算法不同,它具有与其线性算法完全相同的复杂性。在此基础上,我们还提出了线性相关滤波器的快速多通道扩展,通过线性内核,我们称之为双相关滤波器(DCF)。在 50 个视频基准测试中,KCF 和 DCF 的表现都优于 Struck 或 TLD 等顶级跟踪器,尽管它们以每秒数百帧的速度运行,并且只需几行代码即可实现(算法 1)。为了鼓励进一步的发展,我们的跟踪框架是开源的。

1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值