MIT线性代数Linear Algebra公开课笔记 第三讲 矩阵乘法和逆矩阵(lecture 3 Multiplication and Inverse Matrices)

本节是Gilbert Strang的MIT线性代数Linear Algebra公开课中【第三讲 矩阵乘法和逆矩阵(lecture 3 Multiplication and Inverse Matrices)】的笔记,参考他在 MIT Linear Algebra课程网站上公开分享的 lecture summary (PDF) & Lecture video transcript (PDF)等文档,整理笔记如下,笔记中的大部分内容是从 MIT Linear Algebra课程网站上的资料中直接粘贴过来的,本人只是将该课程视频中讲述的内容整理为文字形式,前面的章节可在本人的其他博客中找到(此处戳第一讲第二讲,后面的章节会按照视频顺序不断更新~

lecture 3 Multiplication and Inverse Matrices

Matrix Multiplication(4 ways)

1. Standard (row times column) 单个元素求法

  若矩阵乘积为 A B = C AB=C AB=C,其中 A : m × n , B : n × p , C : m × p A:m×n, B:n×p, C:m×p A:m×n,B:n×p,C:m×p

  在 C C C的第 i i i行第 j j j列处的元素 记为 c i j c_{ij} cij,如求C的第三行第四列元素 c 34 c_{34} c34
c 34 = ( row3 of    A ) ∗ ( column4 of    B ) = a 31 b 14 + a 32 b 24 + ⋯ = ∑ k = 1 n a 3 k b k 4 \begin{aligned} c_{34}&=(\text{row3 of} \; A)*(\text{column4 of} \; B)\\ &=a_{31}b_{14}+a_{32}b_{24}+\cdots \\ &=\sum_{k=1}^{n} a_{3k}b_{k4} \end{aligned} c34=(row3 ofA)(column4 ofB)=a31b14+a32b24+=k=1na3kbk4

2.Columns

  矩阵 A A A 乘以矩阵 B B B的第 p p p列等于矩阵 C C C的第 p p p列,由于矩阵乘以列向量相当于矩阵各列的线性组合,对应的组合系数为该列向量的各元素值,因此,the columns of C C C are combinations of columns of A A A.

3.Rows

 矩阵 A A A 的第 i i i 行乘以矩阵 B B B 等于矩阵 C C C 的第 i i i 行. So the rows of C C C are combinations of rows of B B B.

4.Column times row

 A column of A A A is an m × 1 m×1 m×1 vector and a row of B B B is a 1 × p 1×p 1×p vector, and their product is a matrix.

 Example 1:
[ 2 3 4 ] [ 1 6 ] = [ 2 12 3 18 4 24 ] \left[\begin{array}{l} {2} \\ {3} \\ {4} \end{array}\right]\left[\begin{array}{ll} {1} & {6} \end{array}\right]=\left[\begin{array}{ll} {2} & {12} \\ {3} & {18} \\ {4} & {24} \end{array}\right] 234[16]=234121824
 结果矩阵的各列是左面 [ 2 3 4 ] \left[\begin{array}{l}{2} \\{3} \\{4}\end{array}\right] 234的倍数,这是因为等式右边矩阵是等式左边矩阵 [ 2 3 4 ] \left[\begin{array}{l}{2} \\{3} \\{4}\end{array}\right] 234各列的线性组合,由于只有一列,因此是倍数(如果画出各列,他们都是同一方向);结果矩阵的各行都是左面 [ 1 6 ] \left[\begin{array}{ll}{1} & {6}\end{array}\right] [16]的倍数(如果画出各行,他们都是同一方向),延续这种思想得到矩阵相乘的第四种方法:
A B = sum of    { ( cols of    A ) × ( rows of    B ) } AB=\text{sum of}\; \{(\text{cols of} \; A) × (\text{rows of} \; B)\} AB=sum of{(cols ofA)×(rows ofB)}
  即
A B = ∑ k = 1 n [ a 1 k ⋮ a m k ] [ b k 1 ⋯ b k n ] A B=\sum_{k=1}^{n}\left[\begin{array}{c} {a_{1 k}} \\ {\vdots} \\ {a_{m k}} \end{array}\right]\left[\begin{array}{lll} {b_{k 1}} & {\cdots} & {b_{k n}} \end{array}\right] AB=k=1na1kamk[bk1bkn]
 Example 2:
[ 2 7 3 8 4 9 ] [ 1 6 0 0 ] = [ 2 3 4 ] [ 1 6 ] + [ 7 8 9 ] [ 0 0 ] \left[ \begin{matrix} 2& 7\\ 3& 8\\ 4& 9 \end{matrix} \right ] \left[ \begin{matrix} 1 & 6\\ 0 & 0\\ \end{matrix} \right ] =\left[ \begin{matrix} 2\\ 3\\ 4 \end{matrix} \right] \left[ \begin{matrix} 1 & 6\\ \end{matrix} \right] + \left[ \begin{matrix} 7\\ 8\\ 9 \end{matrix} \right] \left[ \begin{matrix} 0 & 0\\ \end{matrix} \right] 234789[1060]=234[16]+789[00]
 行空间:矩阵的行的所有线性组合(Example 1中结果矩阵的行空间是向量 [ 1 6 ] \left[\begin{array}{ll}{1} & {6}\end{array}\right] [16]上的直线)

 列空间同理。

5.Blocks Multiplication

 If we subdivide A A A and B B B into blocks that match properly, we can write the product A B = C AB = C AB=C in terms of products of the blocks:
[ A 1 A 2 A 3 A 4 ] [ B 1 B 2 B 3 B 4 ] = [ C 1 C 2 C 3 C 4 ] \left[\begin{array}{ll} {A_{1}} & {A_{2}} \\ {A_{3}} & {A_{4}} \end{array}\right]\left[\begin{array}{ll} {B_{1}} & {B_{2}} \\ {B_{3}} & {B_{4}} \end{array}\right]=\left[\begin{array}{ll} {C_{1}} & {C_{2}} \\ {C_{3}} & {C_{4}} \end{array}\right] [A1A3A2A4][B1B3B2B4]=[C1C3C2C4]
 Here C 1 = A 1 B 1 + A 2 B 3 C_{1}=A_{1} B_{1}+A_{2} B_{3} C1=A1B1+A2B3.

Inverses(Square matrices方阵)

1.Nonsingular or Invertible

  If A is a square matrix, the most important question you can ask about it is whether it has an inverse A − 1 A^{-1} A1, If it does, then A − 1 A = I = A A − 1 A^{-1} A=I=A A^{-1} A1A=I=AA1 and we say that A A A is invertible or nonsingular.

 对于方阵来说,左逆矩阵等于右逆矩阵(在 A A A左边的是左逆矩阵,在 A A A右边的是右逆矩阵),即如果方阵左乘某矩阵等到单位阵,那么把它放到方阵的右边相乘,结果同样是单位阵;但是,如果是非方阵,左逆不等于右逆,因为形状不同无法相乘。

  Example 3:求A的逆矩阵
[ 1 3 2 7 ] [ a c b d ] = [ 1 0 0 1 ] \left[\begin{array}{ll}{1} & {3} \\{2} & {7}\end{array}\right] \quad\left[\begin{array}{ll}{a} & {c} \\{b} & {d}\end{array}\right]=\left[\begin{array}{ll}{1} & {0} \\{0} & {1}\end{array}\right] [1237][abcd]=[1001]                     A A A        A − 1 A^{-1} A1      I I I

 Finding the inverse of a matrix is closely related to solving systems of linear equations: A A A times column j j j of A − 1 A^{−1} A1 equals column j j j of the identity matrix。这些方程具有相同的系数矩阵 A A A,但是右侧向量是单位阵的不同列,即
[ 1 3 2 7 ] [ a b ] = [ 1 0 ] [ 1 3 2 7 ] [ c d ] = [ 0 1 ] \left[\begin{array}{ll} {1} & {3} \\ {2} & {7} \end{array}\right]\left[\begin{array}{r} {a} \\ {b} \end{array}\right]=\left[\begin{array}{l} {1} \\ {0} \end{array}\right]\\ \left[\begin{array}{ll} {1} & {3} \\ {2} & {7} \end{array}\right]\left[\begin{array}{r} {c} \\ {d} \end{array}\right]=\left[\begin{array}{l} {0} \\ {1} \end{array}\right] [1237][ab]=[10][1237][cd]=[01]

 This is just a special form of the equation A x = b Ax = b Ax=b,此问题可以用Gauss-Jordan Elimination法来解。(可直接看后面的Gauss-Jordan Elimination部分,该方法以本问题为例进行讲解)

2.Singular case: No inverse

 Example 4:
A = [ 1 3 2 6 ] A= \left[\begin{array}{ll} {1} & {3} \\ {2} & {6} \end{array}\right] A=[1236] 该矩阵没有逆矩阵,因为:

  解释一:它的行列式为0;

  解释二:假设矩阵 A A A乘以某矩阵得到单位阵,是否有可能? 若考虑列,矩阵 A A A与某矩阵相乘,结果中的列都来自于 A A A的列,而单位阵的第一列是 [ 1 0 ] \left[\begin{array}{l} {1} \\{0} \end{array}\right] [10],不可能是 A A A中各列的组合,因为 A A A的两列共线,所有线性组合均在此直线上,而 [ 1 0 ] \left[\begin{array}{l} {1} \\{0} \end{array}\right] [10] 不在此直线上。

  解释三: If no inverse, you can find a vector x    ( x ≠ 0 ) x \; (x \not= 0) x(x=0) with A x = 0 A \mathbf{x}=0 Ax=0. (即其列能通过线性组合得到0)
[ 1 3 2 6 ] [ 3 − 1 ] = [ 0 0 ] \left[\begin{array}{ll} {1} & {3} \\ {2} & {6} \end{array}\right]\left[\begin{array}{r} {3} \\ {-1} \end{array}\right]=\left[\begin{array}{l} {0} \\ {0} \end{array}\right] [1236][31]=[00]  假设本例中的矩阵 A A A存在逆矩阵,则用逆矩阵乘以这个方程,即 A − 1 A x = 0 A^{-1}A \mathbf{x}=0 A1Ax=0 , 则结论是 x = 0 x=0 x=0 ,但是 x ≠ 0 x \not= 0 x=0 ,因此假设不成立,因此矩阵 A A A不可逆。

​   如果矩阵的其中一列对线性组合毫无贡献,矩阵不可能有逆。

Gauss-Jordan Elimination

 Gauss-Jordan Elimination can solve two or more linear equations at the same time.

Gauss-Jordan消元法过程

 以Example 3:求A的逆矩阵为例,在Example 3中所需求解的两个方程组如下:
[ 1 3 2 7 ] [ a b ] = [ 1 0 ] [ 1 3 2 7 ] [ c d ] = [ 0 1 ] \left[\begin{array}{ll} {1} & {3} \\ {2} & {7} \end{array}\right]\left[\begin{array}{r} {a} \\ {b} \end{array}\right]=\left[\begin{array}{l} {1} \\ {0} \end{array}\right]\\ \left[\begin{array}{ll} {1} & {3} \\ {2} & {7} \end{array}\right]\left[\begin{array}{r} {c} \\ {d} \end{array}\right]=\left[\begin{array}{l} {0} \\ {1} \end{array}\right] [1237][ab]=[10][1237][cd]=[01]  将两个方程组一起求解,即将系数矩阵与右侧向量(单位阵)放在一起,即构成增广阵,然后进行消元,通过消元,将左侧的系数矩阵变为单位阵,而原来的单位阵处(右侧向量)则变成了逆矩阵,具体步骤如下:
[ 1 3 1 0 2 7 0 1 ] ⟶ [ 1 3 1 0 0 1 − 2 1 ] ⟶ [ 1 0 7 − 3 0 1 − 2 1 ] \left[\begin{array}{ll|ll} {1} & {3} & {1} & {0} \\ {2} & {7} & {0} & {1} \end{array}\right] \longrightarrow\left[\begin{array}{rr|rr} {1} & {3} & {1} & {0} \\ {0} & {1} & {-2} & {1} \end{array}\right] \longrightarrow\left[\begin{array}{rr|rr} {1} & {0} & {7} & {-3} \\ {0} & {1} & {-2} & {1} \end{array}\right] [12371001][10311201][10017231]             A A A     I I I                       I I I    A − 1 A^{-1} A1

 故
A − 1 = [ 7 − 3 − 2 1 ] A^{-1}=\left[\begin{array}{rr} {7} & {-3} \\ {-2} & {1} \end{array}\right] A1=[7231] 注意:利用Gauss消元法时,只需消元为上三角矩阵即可,即做完上面第一步得到 [ 1 3 1 0 0 1 − 2 1 ] \left[\begin{array}{rr|rr}{1} & {3} & {1} & {0} \\ {0} & {1} & {-2} & {1}\end{array}\right] [10311201] 即可;但是如果利用Gauss-Jordan Elimination法,需要再进行一步,使得左半部分变为单位阵,即得到 [ 1 0 7 − 3 0 1 − 2 1 ] \left[\begin{array}{rr|rr}{1} & {0} & {7} & {-3} \\ {0} & {1} & {-2} & {1}\end{array}\right] [10017231] 才结束。

解释Gauss-Jordan Elimination法的变化:

​ 增广矩阵的消元过程相当于在增广矩阵左侧乘以一串消元矩阵,即消元法的矩阵形式;若将所有消元过程考虑到一起,即将消元矩阵全部乘在一起,综合考虑为 E E E,则上述消元过程可以表示为:
E [ A ∣ I ] = [ I ∣ E ] E[A | I]=[I | E] E[AI]=[IE] 由左半部分知: E A = I EA=I EA=I,则 E = A − 1 E=A^{-1} E=A1,因此 E [ A ∣ I ] = [ I ∣ A − 1 ] E[A | I]=[I | A^{-1}] E[AI]=[IA1]成立。
 故,若要求某方阵的逆矩阵,只需在其右侧插入单位阵,然后进行Gauss-Jordan Elimination即可,最终,原单位阵变为所求的逆矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值