八皇后问题的设计思路

八皇后问题的设计思路

问题描述:
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。 高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
设计算法:
对于八皇后问题,这里采用了回溯法解决该问题。回溯法,又被称为“试探法”。解决问题时,每进行一步,都是抱着试试看的态度,如果发现当前选择并不是最好的,或者这么走下去肯定达不到目标,立刻回头去重新选择。这种走不通就回退再走的方法就是回溯法。回溯法从问题本身出发,寻找可能实现的所有情况。
求解思路:
从棋盘的第一行开始,从第一个位置开始,依次判断当前位置是否能够放置皇后,判断的依据为:同该行之前的所有行中皇后的所在位置进行比较,如果在同一列,或者在同一条斜线上(斜线有两条,为正方形的两个对角线),都不符合要求,继续检验后序的位置。如果该行所有位置都不符合要求,则回溯到前一行,改变皇后的位置,继续试探。如果试探到最后一行,所有皇后摆放完毕,则直接打印出 8*8 的棋盘。最后将棋盘恢复原样,避免影响下一次摆放。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值