Python-OpenCV运动物体检测

本文介绍了使用Python和OpenCV进行运动物体检测的方法,通过比较连续帧之间的差异来定位移动目标。虽然该技术在智能安防等领域有应用,但室外光线变化可能导致误检测,存在局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运动物体检查,在移动目标定位和智能安防系统中有广泛的应用,它的实现原理:捕获连续帧之间的变化情况,将每次捕获的图像进行对比,然后检查差值图像中的所有斑块(颜色相近的地方)。

Demo在实现的过程中,首先需要设置“背景帧”,通过捕获连续帧,比较“背景帧”与其它帧之间的差异,这种方法检测结果还是挺不错的,但是若在室外,光线的变化就会引起误检测,具有局限性和干扰性。 

Demo运行效果如下:

Demo实现如下:

import cv2
import numpy as np

camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头
# 判断视频是否打开
if (camera.isOpened()):
    print('Open')
else:
    print('摄像头未打开')

# 测试用,查看视频size
size = (int(camera.get(cv2.CAP_PROP_FRAME_
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不脱发的程序猿

亲,赏包辣条吧~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值