ccf认证最优配餐80分

问题描述
试题编号: 201409-4
试题名称: 最优配餐
时间限制: 1.0s
内存限制: 256.0MB
问题描述:
问题描述
  栋栋最近开了一家餐饮连锁店,提供外卖服务。随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题。
  栋栋的连锁店所在的区域可以看成是一个n×n的方格图(如下图所示),方格的格点上的位置上可能包含栋栋的分店(绿色标注)或者客户(蓝色标注),有一些格点是不能经过的(红色标注)。
  方格图中的线表示可以行走的道路,相邻两个格点的距离为1。栋栋要送餐必须走可以行走的道路,而且不能经过红色标注的点。


  送餐的主要成本体现在路上所花的时间,每一份餐每走一个单位的距离需要花费1块钱。每个客户的需求都可以由栋栋的任意分店配送,每个分店没有配送总量的限制。
  现在你得到了栋栋的客户的需求,请问在最优的送餐方式下,送这些餐需要花费多大的成本。
输入格式
  输入的第一行包含四个整数n, m, k, d,分别表示方格图的大小、栋栋的分店数量、客户的数量,以及不能经过的点的数量。
  接下来m行,每行两个整数xi, yi,表示栋栋的一个分店在方格图中的横坐标和纵坐标。
  接下来k行,每行三个整数xi, yi, ci,分别表示每个客户在方格图中的横坐标、纵坐标和订餐的量。(注意,可能有多个客户在方格图中的同一个位置)
  接下来d行,每行两个整数,分别表示每个不能经过的点的横坐标和纵坐标。
输出格式
  输出一个整数,表示最优送餐方式下所需要花费的成本。
样例输入
10 2 3 3
1 1
8 8
1 5 1
2 3 3
6 7 2
1 2
2 2
6 8
样例输出
29
评测用例规模与约定
  前30%的评测用例满足:1<=n <=20。
  前60%的评测用例满足:1<=n<=100。
  所有评测用例都满足:1<=n<=1000,1<=m, k, d<=n^2。可能有多个客户在同一个格点上。每个客户的订餐量不超过1000,每个客户所需要的餐都能被送到。
使用的是广度优先搜索,开始将所有分店的坐标放到队列中。然后进行广度优先搜索。
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;


public class Main {
	    static  Queue<node> queue=new LinkedList<>();
	    static int ans=0;
	    static director[] directors=new director[]{new director(-1, 0),new director(0, -1),new director(1, 0),new director(0, 1)};
	public static void main(String[] args) {
		Scanner scanner=new Scanner(System.in);
		int size=scanner.nextInt();
		int service=scanner.nextInt();
		int client=scanner.nextInt();
		int block=scanner.nextInt();
		int buyercount=0;
		int[][] visited=new int[size+1][size+1];
		int[][] buyer=new int[size+1][size+1];
		for (int i = 0; i < service; i++) {
			int x=scanner.nextInt();
			int y=scanner.nextInt();
			queue.add(new node(x, y, 0));
			visited[x][y]=1;
		}
		for (int i = 0; i < client; i++) {
			int x=scanner.nextInt();
			int y=scanner.nextInt();
			int count=scanner.nextInt();
			if (buyer[x][y]==0) {
				buyercount=buyercount+1;
			}
			buyer[x][y]+=count;
		}
		for (int i = 0; i < block; i++) {
			int x=scanner.nextInt();
			int y=scanner.nextInt();
			visited[x][y]=1;
		}
		bfs(size,visited,buyer,buyercount);
		System.out.println(ans);
	}
	private static void bfs(int size, int[][] visited, int[][] buyer,
			int buyercount) {
		node front,v;
		while (!queue.isEmpty()) {
			front=queue.peek();
			queue.remove();
			for (int i = 0; i < 4; i++) {
				int row=front.row+directors[i].x;
				int col=front.col+directors[i].y;
				int step=front.step+1;
				v=new node(row, col, step);
				if (v.col<1||v.col>size||v.row<1||v.row>size) {
					continue;
				}
				if (visited[v.row][v.col]==1) {
					continue;
				}
				if (buyer[v.row][v.col]>0) {
					visited[v.row][v.col]=1;
					ans+=buyer[v.row][v.col]*v.step;
					buyercount=buyercount-1;
					if (buyercount==0) {
						return;
					}
				}
				visited[v.row][v.col]=1;
				queue.add(v);
			}			
		}		
	}	
}
class node{
	int row;
	int col;
	int step;
	public node(int r,int c,int s) {
		row=r;
		col=c;
		step=s;
	}
}
class director{
	int x;
	int y;
	public director(int a,int b) {
		x=a;
		y=b;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值