【codeforces 451E】Devu and Flowers

本文解析了DevuandFlowers题目,介绍了如何利用多重集组合数、Lucas定理和状态压缩来求解花坛中花朵组合的数量。通过二进制表示状态,结合Lucas定理取模,避免数据溢出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:Devu and Flowers

题意:

  有n个花坛,要选s支花,每个花坛有f[i]支花,同一个花坛的花颜色相同,不同花坛的花颜色不同,问可以有多少种组合。

解析:

  多重集组合数+ L u c a s Lucas Lucas定理+状压。
  直接上多重集组合数的公式就行了,这里由于 n ≤    20 n\leq\;20 n20,可以将状态压缩为二进制数,即枚举 x = 0 x=0 x=0~ 2 n − 1 2^n-1 2n1,若 x x x在二进制表示下共有 p p p位为1,分别是第 i 1 , i 2 , . . . . . . i p i_1,i_2,......i_p i1,i2,......ip位,则这个 x x x就代表公式中的 ( − 1 ) p C N + M − c i 1 − c i 2 − . . . . . . − c i p − p − 1 N − 1 (-1)^pC_{N+M-c_{i_1}-c_{i_2}-......-c_{i_p}-p-1}^{N-1} (1)pCN+Mci1ci2......cipp1N1
  特别的,若 x = 0 x=0 x=0则代表 C N + M − 1 N − 1 C_{N+M-1}^{N-1} CN+M1N1。并且为了防止爆 l o n g long long l o n g long long,可以通过 L u c a s Lucas Lucas定理取模解决。

代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;

const int mod=1e9+7;
const int Max=20;
int n,m,ans;
int num[Max];

inline int ksm(int a,int b)
{
	int ans=1;
	a%=mod;
	while(b)
	{
	  if(b&1) ans=(ans*a)%mod;
	  b>>=1;
	  a=(a*a)%mod;
	}
	return ans;
}
inline int C(int n,int m)
{
	if(n>=0&&m>=0&&n>=m)
	{
	  int s1=1,s2=1;
	  for(int i=m-1;~i;i--)
	  {
	 	s1=s1*(n-i)%mod;
	 	s2=s2*(i+1)%mod;
	  }
	  return s1*ksm(s2,mod-2)%mod;
	}
	else return 0;
}
inline int Lucas(int n,int m)
{
	if(!m) return 1;
	return (C(n%mod,m%mod)*Lucas(n/mod,m/mod))%mod;
}

signed main()
{
	cin>>n>>m;
	for(int i=0;i<n;i++) cin>>num[i];
	for(int k=0;k<(1<<n);k++)
	{
	  int p=0,t=n+m;
	  for(int i=0;i<n;i++)
	  {
	  	if(!((1<<i)&k)) continue;
	  	t-=num[i],p++;
	  }
	  if(t-p-1<0) continue;  //注意特判
	  t-=p+1;
	  if(p&1) ans=(ans-Lucas(t,n-1))%mod;
	  else ans=(ans+Lucas(t,n-1))%mod;
	}
	cout<<(ans%mod+mod)%mod;
	return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值