Consecutive Numbers Sum

本文探讨了如何将一个正整数N分解为连续正整数之和的问题,通过等差数列的性质,设计了一种高效算法来计算所有可能的组合数量。举例说明了当N为5、9和15时,分别有2、3和4种不同的连续正整数求和方式。

Given a positive integer N, how many ways can we write it as a sum of consecutive positive integers?

Example 1:

Input: 5
Output: 2
Explanation: 5 = 5 = 2 + 3

Example 2:

Input: 9
Output: 3
Explanation: 9 = 9 = 4 + 5 = 2 + 3 + 4

Example 3:

Input: 15
Output: 4
Explanation: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5

Note: 1 <= N <= 10 ^ 9.

题目理解:

将一个数字分解成一段连续自然数的和

解题思路:

连续自然数的和其实就是一个公差为1的等差数列的和,设这个数列是x,x+1,x+2,...,x+n,那么这个数列的和是(n+1)*x+n*(n+1)/2,这个数列的长度是n+1,第一个数字是x,然后就可以从数字长度为1开始逐渐尝试,看N能否分解成为长度为n的等差数列的和,如果可以,那么一定可以求得整数解x使得x=(N-n*(n+1))/(n+1)

代码如下:

class Solution {
    public int consecutiveNumbersSum(int N) {
    	int res = 0;
    	int n = 0;
    	while(true) {
    		int top = N - (n * n + n) / 2;
    		if(top <= 0)
    			break;
    		if(top % (n + 1) == 0) {
    			res++;
    			//System.out.println(n);
    		}
    		n++;
    	}
    	return res;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值