python基础——过滤list的元素

博客介绍了Python的列表解析表达式和生成器表达式。生成器表达式返回生成器,采用惰性计算,在长列表情况下更省内存。还给出使用建议,如执行循环用循环语句,复制列表用内建操作,长序列取单元素用生成器表达式,且列表解析性能优于map和for循环,更简单明了。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fields=['t_decay','d_decay','t','d']
sub_fields = list(filter(lambda item: item.find('decay') > 0, fields))

sub_fields

['t_decay','d_decay']

列表解析表达式:

[expr for iter_val in iterable]
[expr for iter_val in iterable if cond_expr]

 

生成器表达式:

(expr for iter_var in iterable) 
(expr for iter_var in iterable if cond_expr)

生成器表达式并不真正创建数字列表, 而是返回一个生成器,这个生成器在每次计算出一个条目后,把这个条目“产生”(yield)出来。 生成器表达式使用了“惰性计算”(lazy evaluation,也有翻译为“延迟求值”,我以为这种按需调用call by need的方式翻译为惰性更好一些),只有在检索时才被赋值( evaluated),所以在列表比较长的情况下使用内存上更有效。
 

一些说明:

1. 当需要只是执行一个循环的时候尽量使用循环而不是列表解析,这样更符合python提倡的直观性。

for item in sequence:
process(item)
2. 当有内建的操作或者类型能够以更直接的方式实现的,不要使用列表解析。

例如复制一个列表时,使用:L1=list(L)即可,不必使用:

L1=[x for x in L]
3. 当序列过长, 而每次只需要获取一个元素时,使用生成器表达式。

4. 列表解析的性能相比要比map要好,实现相同功能的for循环效率最差(和列表解析相比差两倍)。

5. 列表解析可以转换为 for循环或者使用map(其中可能会用到filter、lambda函数)表达式,但是列表解析更为简单明了,后者会带来更复杂和深层的嵌套。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化橙同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值