Spark 系列(十二)—— Spark SQL JOIN操作

一、 数据准备

本文主要介绍 Spark SQL 的多表连接,需要预先准备测试数据。分别创建员工和部门的 Datafame,并注册为临时视图,代码如下:

val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()

val empDF = spark.read.json("/usr/file/json/emp.json")
empDF.createOrReplaceTempView("emp")

val deptDF = spark.read.json("/usr/file/json/dept.json")
deptDF.createOrReplaceTempView("dept")

两表的主要字段如下:

emp 员工表
 |-- ENAME: 员工姓名
 |-- DEPTNO: 部门编号
 |-- EMPNO: 员工编号
 |-- HIREDATE: 入职时间
 |-- JOB: 职务
 |-- MGR: 上级编号
 |-- SAL: 薪资
 |-- COMM: 奖金  
dept 部门表
 |-- DEPTNO: 部门编号
 |-- DNAME:  部门名称
 |-- LOC:    部门所在城市

注:emp.json,dept.json 可以在本仓库的resources 目录进行下载。

二、连接类型

Spark 中支持多种连接类型:

  • Inner Join : 内连接;
  • Full Outer Join : 全外连接;
  • Left Outer Join : 左外连接;
  • Right Outer Join : 右外连接;
  • Left Semi Join : 左半连接;
  • Left Anti Join : 左反连接;
  • Natural Join : 自然连接;
  • Cross (or Cartesian) Join : 交叉 (或笛卡尔) 连接。

其中内,外连接,笛卡尔积均与普通关系型数据库中的相同,如下图所示:

https://github.com/heibaiying

这里解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值