XGBoost——机器学习(理论+图解+python代码)

本文详细介绍了XGBoost算法,从集成算法思想到XGBoost的基本原理,阐述了如何通过多棵树提升模型效果,并探讨了XGBoost的目标函数和正则化。还提供了在MacOS上安装XGBoost的步骤,以及用Python实现XGBoost算法进行二分类任务的案例,展示了其在实际应用中的预测准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

一、集成算法思想

二、XGBoost基本思想

三、MacOS安装XGBoost

四、用python实现XGBoost算法


前言

竞赛题中经常会用到XGBoost算法,用这个算法通常会使我们模型的准确率有一个较大的提升。既然它效果这么好,那么它从头到尾做了一件什么事呢?以及它是怎么样去做的呢?

我们先来直观的理解一下什么是XGBoost。XGBoost算法是和决策树算法联系到一起的。决策树算法在我的另一篇博客中讲过了:https://blog.youkuaiyun.com/huacha__/article/details/80919426

 

一、集成算法思想

在决策树中,我们知道一个样本往左边分或者往右边分,最终到达叶子结点,这样来进行一个分类任务。 其实也可以做回归任务。

看上面一个图例左边:有5个样本,现在想看下这5个人愿不愿意去玩游戏,这5个人现在都分到了叶子结点里面,对不同的叶子结点分配不同的权重项,正数代表这个人愿意去玩游戏,负数代表这个人不愿意去玩游戏。所以我们可以通过叶子结点和权值的结合,来综合的评判当前这个人到底是愿意还是不愿意去玩游戏。上面「tree1」那个小男孩它所处的叶子结点的权值是+2(可以理解为得分)。

用单个决策树好像效果一般来说不是太好,或者说可能会太绝对。通常我们会用一种集成的方法,就是一棵树效果可能不太好,用两棵树呢?

看图例右边的「tree2」,它和左边的不同在于它使用了另外的指标,出了年龄和性别,还可以考虑使

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值