机器学习之总结

  • supervised learning(监督学习算法)
    • 线性回归、逻辑回归、神经网络、支持向量机
      • 会有带标签的数据和样本
  • unsupervised learning(无监督学习)
    • K-均值聚类算法、主成分分析法(来进行降维)、异常检测算法
  • 特定的应用和话题
    • 推荐系统、大规模机器学习系统(包括并行和映射-化简算法)、滑动窗口分类器(用于解决计算机视觉问题)
  • 如何构建机器学习系统的建议
    • 偏差和方差、如何使用正则化来解决一些方差问题、如何合理分配时间:学习算法的评价方法(召回率和F1分数这样的评价指标、训练集交叉验证集测试集)、如何调试算法、学习曲线、误差分析、上限分析等

 

 


PS.内容为学习吴恩达老师机器学习的笔记【https://study.163.com/course/introduction/1004570029.htm

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值