7-7 Complete Binary Search Tree(30 point(s))
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.
Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10
1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
思路:
二叉搜索树一般用链表,完全二叉树其中有优先队列,用数组实现。
这个题目就是完全二叉搜索树,既然不浪费空间,那用数组好些。效率的话,插入和删除数组会差些,但题目并不涉及。
- 输入
- 递归计算左右两个子树的节点个数,同时判断出根节点,根节点放在新数组中,
这里的数组下标必须用*2和*2+1进行计算,因为输出要求是层序遍历,利用了完全二叉树的特性。 - 每次走完一条路径时,必须进行/2的下标操作(看完姥姥的视频发现是多余的)
#include <iostream>
#include <string>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define MAXNUM 2000
int arr[MAXNUM]={0};
int tree[MAXNUM]={0};
void fun1(int leftP,int N,int a,int tree_index)
{
float level=0;
if (N==0)
return;
if(N==1)
{
if(a==0)
tree_index=tree_index*2;
else
if(a==1)
tree_index=tree_index*2+1;
tree[tree_index]=arr[leftP];
tree_index/=2;
return;
}
while((pow(2,level)-1)<N)//caculate the level of tree
level++;
int left_node=N-(pow(2,level-1)-1);//last level nodes number
int rightnode=(pow(2,level-1)-1-1)/2;//right node number
int leftnode=(pow(2,level-1)-1-1)/2;//left node number
if (left_node>pow(2,level-1)/2)
{
rightnode+=left_node-pow(2,level-1)/2;//
leftnode+=pow(2,level-1)/2;
}else
leftnode+=left_node;
if(a==0)
tree_index=tree_index*2;
else
if(a==1)
tree_index=tree_index*2+1;
tree[tree_index]=arr[leftP+leftnode];
fun1(leftP,leftnode,0,tree_index);//left child
fun1(leftP+leftnode+1,rightnode,1,tree_index);//right child
tree_index/=2;
}
int main()
{
int N;
cin>>N;
for (int i=1;i<=N;i++)
cin>>arr[i];
sort(arr+1,arr+N+1);
fun1(1,N,2,1);
cout<<tree[1];
for (int i=2;i<=N;i++)
cout<<" "<<tree[i];
cout<<endl;
return 0;
}
最后发现一个问题,完全可以把n=1的情况去掉,。
#include <iostream>
#include <string>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define MAXNUM 2000
int arr[MAXNUM]={0};
int tree[MAXNUM]={0};
void fun1(int leftP,int N,int a,int tree_index)
{
float level=0;
if (N==0)
return;
/*去掉了n=1的情况*/
while((pow(2,level)-1)<N)//caculate the level of tree
level++;
int left_node=N-(pow(2,level-1)-1);//last level nodes number
int rightnode=(pow(2,level-1)-1-1)/2;//right node number
int leftnode=(pow(2,level-1)-1-1)/2;//left node number
if (left_node>pow(2,level-1)/2)
{
rightnode+=left_node-pow(2,level-1)/2;//
leftnode+=pow(2,level-1)/2;
}else
leftnode+=left_node;
if(a==0)
tree_index=tree_index*2;
else
if(a==1)
tree_index=tree_index*2+1;
tree[tree_index]=arr[leftP+leftnode];
fun1(leftP,leftnode,0,tree_index);//left child
fun1(leftP+leftnode+1,rightnode,1,tree_index);//right child
tree_index/=2;
}
int main()
{
int N;
cin>>N;
for (int i=1;i<=N;i++)
cin>>arr[i];
sort(arr+1,arr+N+1);
fun1(1,N,2,1);
cout<<tree[1];
for (int i=2;i<=N;i++)
cout<<" "<<tree[i];
cout<<endl;
return 0;
}
包括
1086 Tree Traversals Again (25)(25 point(s))---MOOC浙大数据结构
这个题目也是。
也就是说,叶节点的处理跟其他节点的处理一样。
最后呢。。。
发现自己考虑多了,白调试了这么久。。。
递归的过程中,一定要注意保持栈中的局部变量,这样递归回来还能继续用,所以左右节点的计算,新建一个变量即可,没有必要再考虑去程和回城的问题了。
#include <iostream>
#include <string>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define MAXNUM 2000
int arr[MAXNUM]={0};
int tree[MAXNUM]={0};
void fun1(int leftP,int N,int tree_index)
{
float level=0;
int tree_indexL=0;
int tree_indexR=0;
if (N==0)
return;
while((pow(2,level)-1)<N)//caculate the level of tree
level++;
int left_node=N-(pow(2,level-1)-1);//last level nodes number
int rightnode=(pow(2,level-1)-1-1)/2;//right node number
int leftnode=(pow(2,level-1)-1-1)/2;//left node number
if (left_node>pow(2,level-1)/2)
{
rightnode+=left_node-pow(2,level-1)/2;//
leftnode+=pow(2,level-1)/2;
}else
leftnode+=left_node;
tree_indexL=tree_index*2;
tree_indexR=tree_index*2+1;
tree[tree_index]=arr[leftP+leftnode];
fun1(leftP,leftnode,tree_indexL);//left child
fun1(leftP+leftnode+1,rightnode,tree_indexR);//right child
}
int main()
{
int N;
cin>>N;
for (int i=1;i<=N;i++)
cin>>arr[i];
sort(arr+1,arr+N+1);
fun1(1,N,1);
cout<<tree[1];
for (int i=2;i<=N;i++)
cout<<" "<<tree[i];
cout<<endl;
return 0;
}
一往无前虎山行