Taxes(Codeforces-735D)

D. Taxes
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Mr. Funt now lives in a country with a very specific tax laws. The total income of mr. Funt during this year is equal to n (n ≥ 2) burles and the amount of tax he has to pay is calculated as the maximum divisor of n (not equal to n, of course). For example, if n = 6 then Funt has to pay 3 burles, while for n = 25 he needs to pay 5 and if n = 2 he pays only 1 burle.

As mr. Funt is a very opportunistic person he wants to cheat a bit. In particular, he wants to split the initial n in several parts n1 + n2 + ... + nk = n (here k is arbitrary, even k = 1 is allowed) and pay the taxes for each part separately. He can't make some part equal to 1because it will reveal him. So, the condition ni ≥ 2 should hold for all i from 1 to k.

Ostap Bender wonders, how many money Funt has to pay (i.e. minimal) if he chooses and optimal way to split n in parts.

Input

The first line of the input contains a single integer n (2 ≤ n ≤ 2·109) — the total year income of mr. Funt.

Output

Print one integer — minimum possible number of burles that mr. Funt has to pay as a tax.

Examples
input
4
output
2
input
27
output
3

题目大意:

一个人要交税,输入一个整数n,他需要交的税是n的最大公约数,若n是素数,那么 就交1,不过他想偷懒,分好几次交,求最少的税。

解题思路:

哥德巴赫猜想,分如下几步判断。

①n是素数——直接交1的税。

②n是除素数之外的偶数——哥德巴赫说过,任何两个偶数都可以拆成两个素数之和( 除了2),所以就可以交2的税。

③n是除素数之外的奇数——n-2是素数嘛?是的话就交2的税,不然的话n-3是偶数,偶数又可以拆成两个素数,这样就是交3的税。

代码如下:

#include<stdio.h>
int sushu(int x)
{
	for(int i=2 ; i*i<=x ; i++)
	if(0==x%i) return 0;
	return 1;
}
int main()
{
	int n;
	while(~scanf("%d",&n))
	{
		if(sushu(n)) printf("1");
		else if(0==n%2) printf("2");
		else if(sushu(n-2)) printf("2");
		else printf("3");
	}
}
PS:被一个小细节坑了好久。。。。用n%2来判断奇偶的时候,不要用!n%2进行相反的判断,因为优先级的原因,会计算成(!n)%2。谨记。。
题目传送门。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值