题意是求出a到b的回文质数,b最大可为1亿。
先判断是回文数还是质数是很有意思的!如果是1亿,则用得到前一半,反转它,得到后一半,让两者结合在一起的方法的话,那么可以通过1到1万,得到1亿以内的所有回文数。例如9876,反转后是6789,拼在一起,得到98766789。看看三位数有多少个回文数。
三位数的回文数都是aba的形式,a可以为1到9,b可以为0到9,则有90个。四位数的回文数为abba的形式,ab可以为10到99,则有90个。一亿以内的回文数,假如0不算的话,那么最小的为1,最大的为9999 9999,即为1位数到8位数的所有回文数,记为s。
现要求n位数的回文数个数,f(n)=9*10^[(n-1)/2],则显然s=f(n),(n=1,2,……,8).s=9+9+……9000+9000。s=2*(9+90+900+9000)=2*(10000-1)=19998。
那有大约有多少个质数呢?
根据素数定理,a以内的质数个数约为a/ln(a)。1亿/ln(1亿)约为5428681。
可见质数远多于回文数!
先判断是回文数还是质数是很有意思的!如果是1亿,则用得到前一半,反转它,得到后一半,让两者结合在一起的方法的话,那么可以通过1到1万,得到1亿以内的所有回文数。例如9876,反转后是6789,拼在一起,得到98766789。看看三位数有多少个回文数。
三位数的回文数都是aba的形式,a可以为1到9,b可以为0到9,则有90个。四位数的回文数为abba的形式,ab可以为10到99,则有90个。一亿以内的回文数,假如0不算的话,那么最小的为1,最大的为9999 9999,即为1位数到8位数的所有回文数,记为s。
现要求n位数的回文数个数,f(n)=9*10^[(n-1)/2],则显然s=f(n),(n=1,2,……,8).s=9+9+……9000+9000。s=2*(9+90+900+9000)=2*(10000-1)=19998。
那有大约有多少个质数呢?
根据素数定理,a以内的质数个数约为a/ln(a)。1亿/ln(1亿)约为5428681。
可见质数远多于回文数!