train数据
stackhourglass.py
1.
def forward(self, left, right):
print('PSMNet 123 forward')
print('PSMNet 00001111 forward')
print('stackhourglass left:')
print(left.size()[0])
print(left.size()[1])
print(left.size()[2]) #图像的高
print(left.size()[3]) #图像的宽
refimg_fea = self.feature_extraction(left)
print('PSMNet forward 0000')
targetimg_fea = self.feature_extraction(right)
print('PSMNet forward 1111')
print('stackhourglass refimg_fea disp')
print(refimg_fea.size()[0])
print(refimg_fea.size()[1])
print(refimg_fea.size()[2])
print(refimg_fea.size()[3])
print('stackhourglass targetimg_fea disp')
print(targetimg_fea.size()[0])
print(targetimg_fea.size()[1])
print(targetimg_fea.size()[2])
print(targetimg_fea.size()[3])
左图像特征
stackhourglass left:
1
3
256
512
stackhourglass refimg_fea disp
1
32
64
128
右图像特征
stackhourglass targetimg_fea disp
1
32
64
128
合并左右图像特征。
stackhourglass cost disp
1
64
48
64
128