准确率、精准率和召回率的理解

            我们在在分类任务时,经常会对模型结果进行评估。评估模型好坏的指标有AUC、KS值等等。这些指标是通过预测概率进行计算的。而准确率、精准率和召回率也通过混淆矩阵计算出来的。下图是对混淆矩阵的介绍:

 

 

其中,

TP:样本为正,预测结果为正;

FP:样本为负,预测结果为正;

TN:样本为负,预测结果为负;

FN:样本为正,预测结果为负。

准确率、精准率和召回率的计算公式如下:

准确率(accuracy): (TP + TN )/( TP + FP + TN + FN)

精准率(precision):TP / (TP + FP),正确预测为正占全部预测为正的比例

召回率࿰

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值