BERT:基于TensorFlow的BERT模型搭建中文问答任务模型

目录

    • 1、导入相关库
    • 2、准备数据集
    • 3、对问题和答案进行分词
    • 4、构建模型
    • 5、编译模型
    • 6、训练模型
    • 7、评估模型
    • 8、使用模型进行预测

1、导入相关库

#导入numpy库,用于进行数值计算
import numpy as np

#从Keras库中导入Tokenizer类,用于将文本转换为序列
from keras.preprocessing.text import Tokenizer
 
#从Keras库中导入pad_sequences函数,用于对序列进行填充或截断
from keras.preprocessing.sequence import pad_sequences

#从Keras库中导入Model类,用于构建神经网络模型
from keras.models import Model  

#从Keras库中导入Input、Dense、LSTM和Dropout类,用于构建神经网络层
from keras.layers import Input, Dense, LSTM, Dropout

#从transformers库中导入TFBertModel和BertTokenizer类,用于使用BERT模型和分词器 
from transformers import TFBertModel, BertTokenizer

2、准备数据集

#这里使用一个简单的示例数据集,定义问题和答案的列表。在实际应用中需要根据实际问题调整数据格式
questions = ['你好吗?', '你叫什么名字?', '你喜欢什么运动?']
answers = ['我很好!', '我叫小明。', '我喜欢打篮球。']

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缘起性空、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值