动态规划之最长公共子序列(LCS)

本文介绍了最长公共子序列(LCS)的概念,通过例子阐述其含义,并探讨了如何使用动态规划解决寻找两个字符串的LCS问题。通过状态转移方程描述了动态规划的解决方案,指出LCS问题具有最优子结构和重叠子问题性质。最后,讨论了动态规划法在解决此类问题中的应用,并给出了问题的递归式和回溯输出LCS的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:最长公共子序列(Longest Common Subsequence, LCS)概念

     举个例子,cnblogs这个字符串中子序列有多少个呢?很显然有27个,比如其中的cb,cgs等等都是其子序列,一个字符串Str,去掉零个或者多个元素所剩下的子串称为Str的子序列我们可以看出,子序列不见得一定是连续的,连续的那是子串

     我想大家已经了解了子序列的概念,那现在可以延伸到两个字符串了,那么大家能够看出:cnblogs和belong的公共子序列吗?

在你找出的公共子序列中,你能找出最长的公共子序列吗?

从图中我们看到了最长公共子序列为blog,仔细想想我们可以发现其实最长公共子序列的个数不是唯一的,可能会有两个以上,

但是长度一定是唯一的,比如这里的最长公共子序列的长度为4


寻找LCS的一种方法是枚举X所有的子序列,然后注意检查是否是Y的子序列,并随时记录发现的最长子序列。假设X有m个元素,则X有2^m个子序列,指数级的时间,对长序列不实际。

使用动态规划求解这个问题,先寻找最优子结构。设X=<x1,x2,…,xm>和Y=<y1,y2,…,yn>为两个序列,LCS(X,Y)表示X和Y的一个最长公共子序列,可以看出

  1. 如果xm=yn,则LCS ( X,Y ) = xm + LCS ( Xm-1,Yn-1 )。
  2. 如果xm!=yn,则LCS( X,Y )= max{ LCS ( Xm-1, Y ), LCS ( X, Yn-1 ) }

LCS问题也具有重叠子问题性质:为找出X和Y的一个LCS,可能需要找X和Yn-1的一个LCS以及Xm-1和Y的一个LCS。但这两个子问题都包含着找Xm-1和Yn-1的一个LCS,等等.

DP最终处理的还是数值(极值做最优解),找到了最优值,就找到了最优方案;为了找到最长的LCS,我们定义dp[i][j]记录序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值