题意:给十进制数转换为黄金分割进制,要求每位为0或1,且不能出现相邻的1
题解:令x为黄金分割比,1 = x^(-1) + x^(-2), n = n*(x^(-1) + x^(-2)), 题目提示了两种操作 x^1 + 1 = x^2, 2*x^2 = x^3 + 1, 最多100位数所以每次扫一遍乱搞一下就可以了,操作一可以减少总的数字的数量所以优先做1操作可以减少次数
#include <iostream>
#include <cstdio>
#include <cctype>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
#include <set>
#include <stack>
#include <sstream>
#include <queue>
#include <map>
#include <functional>
#include <bitset>
#include <ctime>
using namespace std;
#define pb push_back
#define mk make_pair
#define ll long long
#define ull unsigned long long
#define pii pair<int, int>
#define mk make_pair
#define fi first
#define se second
#define ALL(A) A.begin(), A.end()
#define rep(i,n) for(int (i)=0;(i)<(int)(n);(i)++)
#define repr(i, n) for(int (i)=(int)(n);(i)>=0;(i)--)
#define repab(i,a,b) for(int (i)=(int)(a);(i)<=(int)(b);(i)++)
#define reprab(i,a,b) for(int (i)=(int)(a);(i)>=(int)(b);(i)--)
#define sc(x) scanf("%d", &x)
#define pr(x) printf("x:%d\n", x)
#define fastio ios::sync_with_stdio(0), cin.tie(0)
#define frein freopen("in.txt", "r", stdin)
#define freout freopen("out.txt", "w", stdout)
#define freout1 freopen("out1.txt", "w", stdout)
#define lb puts("")
#define lson ((rt<<1)+1)
#define rson ((rt<<1)+2)
#define mid ((l+r)/2)
#define lmid (l+(r-l)/3)
#define rmid (r-(r-l)/3)
#define debug cout<<"???"<<endl
const double PI = 3.1415926535897932384626433;
const ll mod = 2147493647;
const int INF = 0x3f3f3f3f;
const double eps = 1e-12;
template<class T> T gcd(T a, T b){if(!b)return a;return gcd(b,a%b);}
const int maxn = 200, base = 100;
int cnt[maxn], n;
void print(int l, int r)
{
for(int i = r; i >= l; i--){
printf("cnt[%d]:%d\n",i,cnt[i]);
}lb;
}
int main()
{
//frein;
//freout;
while(scanf("%d", &n) != EOF){
//cout << n << endl;
memset(cnt, 0, sizeof(cnt));
cnt[base-1] = cnt[base-2] = n;
int flg = 1;
while(1){
flg = 0;
for(int i = 0; i < maxn-1; i++){
while((cnt[i] && cnt[i+1])||cnt[i] >= 2){
//print(27,33);
flg = 1;
if(cnt[i] && cnt[i+1]){
int t = min(cnt[i], cnt[i+1]);
cnt[i+2] += t;
cnt[i] -= t;
cnt[i+1] -= t;
}
if(cnt[i] >= 2){
int t = cnt[i]/2;
cnt[i] -= 2*t;
cnt[i+1] += t;
cnt[i-2] += t;
}
}
}
if(flg == 0) break;
}
int len = 0, l = 500, r = base;
for(int i = 0; i < maxn; i++){
if(cnt[i]) l = min(l,i), r = max(r,i);
}
for(int i = r; i >= l; i--){
printf("%d",cnt[i]);
if(i == base && i > l) printf(".");
}lb;
}
return 0;
}