hdu 1394 Minimum Inversion Number -求逆序对的个数- 线段树单节点更新

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 19711    Accepted Submission(s): 11845


Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

Output
For each case, output the minimum inversion number on a single line.
 

Sample Input
  
10 1 3 6 9 0 8 5 7 4 2
 

Sample Output
  
16
 

Author
CHEN, Gaoli
 

Source
 

题意

n个数分别是 0~n-1 ,给出这n个数的一个序列,可以做如题的转换, 问转换后最少有多少个逆序对


解题思路

用线段树维护当前区间出现过几个数, 插入a[i] 之前插入的比 a[i] 大的数的个数,即为 a[i]构成的逆序对的个数

先处理出初始序列的逆序对个数,然后从头枚举将a[i] 放 到最后,逆序对个数会变为几 。

a[i]一开始在第一个位置,比他小的肯定都在其后面,产生a[i]个逆序对
 所以将a[i]放到最后需 要
 加上多产生的(n-a[i]-1)个逆序对

再减去a[i]放最后之前构成逆序对的个数


代码

#include <iostream>
#include <cstdio>
#include <map>
#include <cmath>
#include <string.h>
#include <algorithm>
#include <set>
#include <sstream>
#include <vector>
#include <queue>
#include <stack>
using namespace std;

const int maxn = 5000*4;
const int INF = 0x3f3f3f3f;

struct node{
    int l,r;
    int sum;///区间l-r有几个数了
}tree[maxn];


void buildtree(int node,int b,int e){
    int mid = (b+e)/2;
    tree[node].l = b;
    tree[node].r  = e;
    tree[node].sum = 0;
    if(b==e) return;
    if(b <= mid) buildtree(node*2,b,mid);
    if(e > mid) buildtree(node*2+1,mid+1,e);
}

void update(int node,int ql,int qr){
    if(ql <= tree[node].l && qr >= tree[node].r){
        tree[node].sum ++;
        return;
    }
    int mid  = (tree[node].l + tree[node].r)/2;
    if(ql <= mid) update(node*2,ql,qr);
    if(qr > mid) update(node*2+1,ql,qr);
    tree[node].sum = tree[node*2].sum + tree[node*2+1].sum;
}


int query(int node,int ql,int qr){
    int  ans1 = 0,ans2 = 0;
    if(ql <= tree[node].l && qr >= tree[node].r)
        return tree[node].sum;
    int mid = (tree[node].l + tree[node].r)/2;
    if(ql <= mid) ans1 = query(node*2,ql,qr);
    if(qr > mid) ans2 = query(node*2+1,ql,qr);
    return ans1+ans2;
}

int main(){
    int n;
    int a[maxn];
    while(scanf("%d",&n) != EOF){
        int sum = 0;///初始情况下,逆序对的个数
        buildtree(1,0,n-1);
        for(int i =0;i<n;++i){
            scanf("%d",&a[i]);
            sum += query(1,a[i],n-1);///在他之前插入的比他大的数有几个
            update(1,a[i],a[i]);
        }

        int res = sum;
        for(int i = 0; i < n; ++i){///将a[i]放到后面
            ///a[i]一开始在第一个位置,比他小的肯定都在其后面,产生a[i]个逆序对
            ///所以将a[i]放到最后需要
            ///加上多产生的(n-a[i]-1)个逆序对再减去a[i]放最后之前构成逆序对的个数
            sum += (n-a[i]-1) - a[i];
            res = min(res,sum);
        }

        printf("%d\n",res);
    }



    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值