Drainage Ditches HDU - 1532

本文深入探讨了最大流问题,特别是解决复杂网络中水从池塘流向溪流的最大速率问题。通过构建并优化排水沟网络,利用算法寻找增广路径,调整流量以达到最大流状态。代码实现展示了如何处理重边,叠加水流速度,最终输出最大可能的排水速率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题:

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch. 

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond. 

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

这是一个最大流模板题,需要注意的是存在重边,需要把重边的水流速度叠加。

代码:

#define N 210
#include<queue>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int k[N][N],p[N],book[N];
int s,t,n,m,maxflow,minaug;
struct node
{
    int c,f;
}e[N][N];
void find()//求增广路
{
    queue<int>q;
    memset(book,0,sizeof(book));
    memset(p,0,sizeof(p));
    memset(k,0,sizeof(k));
    p[s]=s;book[s]=1;
    q.push(s);
    while(!q.empty()&&p[t]==0)
    {
        int cu=q.front();
        q.pop();
        for(int i=1; i<=n; i++)//建立残留网络
        {
            if(!book[i])
            {
                if(e[cu][i].c-e[cu][i].f>0)//总流量-已用流量
                {
                    k[cu][i]=e[cu][i].c-e[cu][i].f;
                    q.push(i);p[i]=cu;book[i]=1;
                }
                else if(e[i][cu].f>0)
                {
                    k[cu][i]=e[i][cu].f;
                    q.push(i);p[i]=cu;book[i]=1;
                }
            }
        }
    }
}
void augflow()
{
    int i=t,j;
    if(p[i]==0)
    {
        minaug=0;return ;
    }
    j=0x7fffffff;
    while(i!=s)
    {
        if(k[p[i]][i]<j)
            j=k[p[i]][i];//计算增广路改进的最小流量
        i=p[i];
    }
    minaug=j;
}
void upflow()//调整流量,改变已用流量的网络图
{
    int i=t;
    if(p[t]==0)return;
    while(i!=s)
    {
        if(e[p[i]][i].c-e[p[i]][i].f>0)
            e[p[i]][i].f+=minaug;
        else if(e[p[i]][i].f>0)
            e[p[i]][i].f+=minaug;
        i=p[i];
    }
}
void slove()
{
    s=1; t=n;
    maxflow=0;
    while(1)
    {
        find();
        augflow();//计算可改进量
        maxflow+=minaug;
        if(minaug>0)upflow();
        else return;
    }
}
int main()
{
    int a,b,c;
    while(~scanf("%d%d",&m,&n))
    {
        memset(e,0,sizeof(e));
        for(int i=0; i<m; i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            e[a][b].c+=c;
        }
        slove();
        printf("%d\n",maxflow);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值