【Visdrone数据集】Visdrone+Cascade_Rcnn

该文记录了在Visdrone数据集上使用mmdetection框架进行Cascade_Rcnn模型训练的结果。对比了两种不同图像尺寸(416*416和640*640)下,经过10和50个epoch训练后的检测性能,发现分辨率的变化对结果影响不大,各类物体的平均精度和召回率基本保持一致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


发现img_scale对训练差别不大

Cascade_Rcnn epoch=10 img_scal=416*416

训练代码:mmdetection框架cascade_rcnn_r101_fpn_1x_coco.py

bash ./tools/dist_train.sh  configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py  4

分辨率:img_scale=(416, 416)
权重保存文件夹:cascade_rcnn_r101_fpn_1x_coco_img_scale416

测试集

命令:

python tools/test.py configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py work_dirs/cascade_rcnn_r101_fpn_1x_coco_img_scale416/epoch_10.pth --options "classwise=True" --eval bbox  --out test.pkl

结果:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.177
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.311
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.182
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.080
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.282
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.395
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.266
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.266
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.266
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.153
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.409
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.493


+------------+-------+-----------------+-------+----------+-------+
| category   | AP    | category        | AP    | category | AP    |
+------------+-------+-----------------+-------+----------+-------+
| pedestrian | 0.089 | people          | 0.034 | bicycle  | 0.048 |
| car        | 0.422 | van             | 0.259 | truck    | 0.246 |
| tricycle   | 0.108 | awning-tricycle | 0.092 | bus      | 0.378 |
| motor      | 0.098 | None            | None  | None     | None  |
+------------+-------+-----------------+-------+----------+-------+
OrderedDict([('bbox_mAP', 0.1774), ('bbox_mAP_50', 0.3111), ('bbox_mAP_75', 0.1825), ('bbox_mAP_s', 0.08), ('bbox_mAP_m', 0.2817), ('bbox_mAP_l', 0.3953), ('bbox_mAP_copypaste', '0.1774 0.3111 0.1825 0.0800 0.2817 0.3953')])

Cascade_Rcnn epoch=50 img_scal=640*640

训练代码:mmdetection框架cascade_rcnn_r101_fpn_1x_coco.py

bash ./tools/dist_train.sh  configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py  4

分辨率:img_scale=(640,640)

测试集

命令:

python tools/test.py configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py work_dirs/cascade_rcnn_r101_fpn_1x_coco/best_bbox_mAP_epoch_16.pth --options "classwise=True" --eval bbox  --out test.pkl

结果:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.178                                                                                                         
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.312                                                                                                        
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.183                                                                                                        
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.080                                                                                                        
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.282                                                                                                        
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.398                                                                                                        
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.267                                                                                                         
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.267                                                                                                         
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.267                                                                                                        
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.156                                                                                                        
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.411                                                                                                        
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.506                                                                                                        
                                                                                                                                                                                        
                                                                                                                                                                                        
+------------+-------+-----------------+-------+----------+-------+                                                                                                                     
| category   | AP    | category        | AP    | category | AP    |                                                                                                                     
+------------+-------+-----------------+-------+----------+-------+                                                                                                                     
| pedestrian | 0.089 | people          | 0.034 | bicycle  | 0.051 |                                                                                                                     
| car        | 0.421 | van             | 0.258 | truck    | 0.249 |                                                                                                                     
| tricycle   | 0.107 | awning-tricycle | 0.092 | bus      | 0.379 |                                                                                                                     
| motor      | 0.099 | None            | None  | None     | None  |                                                                                                                     
+------------+-------+-----------------+-------+----------+-------+                                                              
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值