Act with Prudence

本文探讨了技术债务的概念,解释了它如何影响软件开发,并提供了如何避免和快速偿还技术债务的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

No matter how comfortable a schedule looks at the beginning of an iteration, you can’t avoid being under pressure some of the time. If you find yourself having to choose between “doing it right” and “doing it quick,” it is often appealing to “do it quick” with the understanding that you’ll come back and fix it later. When you make this promise to yourself, your team, and your customer, you mean it. But all too often, the next iteration brings new problems and you become focused on them. This sort of deferred work is known
as technical debt, and it is not your friend. Specifically, Martin Fowler calls this
deliberate technical debt in his taxonomy of technical debt,* and it should not be confused with inadvertent technical debt.
Technical debt is like a loan: you benefit from it in the short term, but you have to pay interest on it until it is fully paid off. Shortcuts in the code make it harder to add features or refactor your code. They are breeding grounds for defects and brittle test cases. The longer you leave it, the worse it gets. By the time you get around to undertaking the original fix, there may be a whole stack of not-quite-right design choices layered on top of the original problem, making the code much harder to refactor and correct. In fact, it is often only when things have got so bad that you must fix the original problem, that you actually do go back to fix it. And by then, it is often so hard to fix that you really
can’t afford the time or the risk.
There are times when you must incur technical debt to meet a deadline or implement a thin slice of a feature. Try not to be in this position, but if the situation absolutely demands it, then go ahead. But (and this is a big but) you must track technical debt and pay it back quickly, or things go rapidly downhill. As soon as you make the decision to compromise, write a task card or log it in your issue-tracking system to ensure that it does not get forgotten. 
If you schedule repayment of the debt in the next iteration, the cost will be minimal. Leaving the debt unpaid will accrue interest, and that interest should be tracked to make the cost visible. This will emphasize the effect on business value of the project’s technical debt and enables appropriate prioritization of the repayment. The choice of how to calculate and track the interest will depend on the particular project, but track it you must.
Pay off technical debt as soon as possible. It would be imprudent to do otherwise.
内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重和阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性和训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模和预测。; 适合人群:具备一定机器学习基础,特别是对神经网络和优化算法有一定了解的研发人员、数据科学家和研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数和训练时间;③ 提高模型的稳定性和泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现,包含详细的代码示例和注释,便于理解和二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展和维护。此外,项目还提供了多种评价指标和可视化分析方法,确保实验结果科学可信。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值