import torch
'''几种特殊的tensor'''
a = torch.Tensor([[1,2], [3,4]])
print(a)
print(a.type())
a = torch.Tensor(2,3)
print(a)
print(a.type())
a = torch.ones_like(a)
print(a)
print(a.type())
a = torch.zero_(a)
print(a)
print(a.type())
a= torch.eye(2,4)
print(a)
print(a.type())
'''随机'''
b= torch.rand(2, 2)
print(b)
print(b.type())
a = torch.normal(mean=0.0, std=torch.rand(5))
print(a)
print(a.type())
"""随机"""
a = torch.rand(2, 2)
print(a)
print(a.type)
#
a = torch.normal(mean=0.0, std=torch.rand(5))
print(a)
print(a.type())
a = torch.normal(mean=torch.rand(5), std=torch.rand(5))
print(a)
print(a.type())
'''序列'''
a = torch.arange(0, 11, 1)
print(a)
print(a.type())
a = torch.linspace(2, 10, 4)#拿到等间隔的4个数字
print(a)
print(a.type())
a = torch.randperm(10)
print(a)
print(a.type())
import numpy as np
a = np.array([[1,2], [2,3]])
print(a)
a = torch.Tensor(2, 2).uniform_(-1, 1)
print(a)
print(a.type())
Tensor创建编程实例
于 2023-04-19 17:29:22 首次发布
部署运行你感兴趣的模型镜像
您可能感兴趣的与本文相关的镜像
PyTorch 2.5
PyTorch
Cuda
PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

853





