情感分析是一种常见的自然语言处理方法的应用,特别是在以提取文本的情感内容为目标的分类方法中。通过这种方式,情感分析可以被视为利用一些情感得分指标来量化定性数据的方法。尽管情绪在很大程度上是主观的,但是情感量化分析已经有很多有用的实践,比如企业分析消费者对产品的反馈信息,或者检测在线评论中的差评信息。
在情感分析应用软件中灵玖的软件NLPIR大数据搜索与挖掘共享软件做的效果是比较好的软件之一。NLPIR由专注于大数据科学研究与工程应用融合领域的十多名博士硕士,倾力15年,持续创新而构建。而情感分析是NLPIR系统里面重要的部分。
最简单的情感分析方法是利用词语的正负属性来判定。句子中的每个单词都有一个得分,乐观的单词得分为 +1,悲观的单词则为 -1。然后我们对句子中所有单词得分进行加总求和得到一个最终的情感总分。很明显,这种方法有许多局限之处,最重要的一点在于它忽略了上下文的信息。例 如,在这个简易模型中,因为“not”的得分为 -1,而“good”的得分为 +1,所以词组“not good”将被归类到中性词组中。尽管词组“not good”中包含单词“good”,但是人们仍倾向于将其归类到悲观词组中。
NLPIR情感分析提供两种模式:全文的情感判别与指定对象的情感判别。情感分析主要采用了两种技术:1.情感词的自动识别与权重自动计算,利用共现关系,采用Bootstrapping的策略,反复迭代,生成新的情感词及权重;2.情感判别的深度神经网络:基于深度神经网络对情感词进行扩展计算,综合为最终的结果。NLPIR情感分析内容形式包括特定人物的正、负面分析,这样可以从整体看到特定人物对社会观点和事情的态度,从而来判断他的态度是积极的还是消极的 。同时通过喜、怒、哀、乐、惊、惧等几种情感维度分别展现他的性格取向,是稳重型还是冒进型&#
NLPIR基于深度神经网络的文本情感分析
最新推荐文章于 2021-04-02 21:03:31 发布