(1) Combination Sum
利用深度优先遍历BFS[1]:
class Solution {
private:
vector<vector<int>> ret;
vector<int> count;
public:
void dfs(int dep,int maxDep,vector<int> &candidates,int target) {
if(target<0)
return;
if(dep==maxDep)
{
if(target==0)
{
vector<int> tmp;
for(int i=0;i<maxDep;i++)
if(count[i]!=0)
for(int j=0;j<count[i];j++)
tmp.push_back(candidates[i]);
ret.push_back(tmp);
return;
}
return;
}
for(int i=0;i<=target/candidates[dep];i++)
{
count[dep]=i;
dfs(dep+1,maxDep,candidates,target-i*candidates[dep]);
}
}
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
ret.clear();
if(candidates.size()==0)
return ret;
sort(candidates.begin(),candidates.end());
count.clear();
count.resize(candidates.size());
dfs(0,candidates.size(),candidates,target);
return ret;
}
};
注意函数参数中尽量使用引用传值,如果使用值传值,递归调用很多的时候会产生很多临时变量,增加程序开销(临时变量的创建析构),如本例中如果dfs()中的candidates没加&的话,程序运行时间会翻倍。
(2) Combination Sum II
在I的基础上添加一个函数,记录每个字符出现的字数:
class Solution {
private:
vector<vector<int>> ret;
vector<int> count;
vector<int> countMax;
vector<int> candidates;
void dfs(int dep,int maxDep,vector<int> &candidates,int target) {
if(target<0)
return;
if(dep==maxDep)
{
if(target==0)
{
vector<int> tmp;
for(int i=0;i<maxDep;i++)
if(count[i]!=0)
for(int j=0;j<count[i];j++)
tmp.push_back(candidates[i]);
ret.push_back(tmp);
return;
}
return;
}
for(int i=0;i<=countMax[dep];i++)
{
count[dep]=i;
dfs(dep+1,maxDep,candidates,target-i*candidates[dep]);
}
}
void preprocess(vector<int> &num) {
int cur=num[0],count=0;
candidates.push_back(cur);
for(int i=0;i<num.size();i++)
{
if(cur==num[i])
{
count++;
}
else
{
countMax.push_back(count);
count=1;
cur=num[i];
candidates.push_back(cur);
}
}
countMax.push_back(count);
}
public:
vector<vector<int> > combinationSum2(vector<int> &num, int target) {
ret.clear();
if(num.size()==0)
return ret;
sort(num.begin(),num.end());
count.clear();
count.resize(num.size());
countMax.clear();
candidates.clear();
preprocess(num);
dfs(0,candidates.size(),candidates,target);
return ret;
}
};
(3) Validate Binary Search Tree
用上下限限定来递归[2]:
class Solution {
private:
bool solve(TreeNode *root, int minval, int maxval)
{
if(root==NULL)
return true;
if(root->val > minval && root->val < maxval)
return solve(root->left,minval,root->val) && solve(root->right,root->val,maxval);
else
return false;
}
public:
bool isValidBST(TreeNode *root) {
return solve(root,numeric_limits<int>::min(),numeric_limits<int>::max());
}
};
注:numeric_limits是C++标准程序库中可以调出关于int,float等类型的特性值,如int在系统中支持的最大值或最小值[3]。
[1] http://blog.youkuaiyun.com/xshalk/article/details/8162857
[2] http://blog.youkuaiyun.com/fightforyourdream/article/details/14444883
[3] http://blog.163.com/wujiaxing009@126/blog/static/7198839920124135147911/