[C++] LeetCode 300. 最长上升子序列

本文探讨了寻找无序整数数组中最长上升子序列长度的问题,提供了两种算法:动态规划和二分查找,前者时间复杂度为O(n^2),后者为O(nlogn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。

说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2)
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

方法一 动态规划

这题用动态规划比较直接,开一个数组,保存以当前元素为结尾的最长递增序列

代码

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int maxres=1;
        int n=nums.size();
        if(n==0) return 0;
        vector<int> res(n,1);
        for(int i=1;i<n;i++){
            for(int j=0;j<i;j++){
                if(nums[i]>nums[j]){
                    res[i]=max(res[i],res[j]+1);
                }
            }
            maxres=max(maxres,res[i]);
        }
        return maxres;
    }
};

方法二 二分查找

开一个数组,用于维护一个递增的序列,通过二分查找找到当前元素在该数组中的插入位置,插入元素。那么最终这个数组的长度即为最长递增序列。但是这个数组不是所求的递增序列。

代码

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> st;
        for(int i=0;i<nums.size();i++){
            auto it=lower_bound(st.begin(),st.end(),nums[i]);
            if(it==st.end()) st.push_back(nums[i]);
            else *it=nums[i];
        }
        return st.size();
    }
};
### 解题思路 LeetCode 第 674 题的目标是找到给定数组中的最长连续递增子序列的长度。此问题可以通过一次线性扫描来解决,时间复杂度为 O(n),空间复杂度可以优化到 O(1)[^1]。 #### 关键点分析 - **连续性**:题目强调的是“连续”,因此只需要比较相邻两个元素即可判断是否构成递增关系。 - **动态规划 vs 贪心算法**:虽然可以用动态规划的思想解决问题,但由于只需记录当前的最大值而无需回溯历史状态,贪心策略更为高效[^3]。 --- ### Python 实现 以下是基于贪心算法的 Python 实现: ```python class Solution: def findLengthOfLCIS(self, nums): if not nums: # 如果输入为空,则返回0 return 0 max_len = 1 # 至少有一个元素时,最小长度为1 current_len = 1 # 当前连续递增序列的长度初始化为1 for i in range(1, len(nums)): # 从第二个元素开始遍历 if nums[i] > nums[i - 1]: # 判断当前元素是否大于前一个元素 current_len += 1 # 是则增加当前长度 max_len = max(max_len, current_len) # 更新全局最大长度 else: current_len = 1 # 否则重置当前长度 return max_len # 返回最终结果 ``` 上述代码通过维护 `current_len` 和 `max_len` 来跟踪当前连续递增序列的长度以及整体的最大长度。 --- ### Java 实现 下面是等效的 Java 版本实现: ```java public class Solution { public int findLengthOfLCIS(int[] nums) { if (nums.length == 0) { // 处理边界情况 return 0; } int maxLength = 1; // 初始化最大长度 int currentLength = 1; // 初始化当前长度 for (int i = 1; i < nums.length; i++) { if (nums[i] > nums[i - 1]) { // 若满足递增条件 currentLength++; // 增加当前长度 maxLength = Math.max(maxLength, currentLength); // 更新最大长度 } else { currentLength = 1; // 不满足递增条件时重新计数 } } return maxLength; // 返回结果 } } ``` 该版本逻辑与 Python 类似,但在语法上更贴近 Java 的特性[^4]。 --- ### C++ 实现 对于 C++ 用户,下面是一个高效的解决方案: ```cpp #include <vector> #include <algorithm> // 使用 std::max 函数 using namespace std; class Solution { public: int findLengthOfLCIS(vector<int>& nums) { if (nums.empty()) { // 边界处理 return 0; } int result = 1; // 结果变量 int count = 1; // 当前连续递增序列长度 for (size_t i = 1; i < nums.size(); ++i) { if (nums[i] > nums[i - 1]) { // 检查递增条件 count++; result = max(result, count); } else { count = 1; // 重置计数器 } } return result; // 返回最终结果 } }; ``` 这段代码同样遵循了单次遍历的原则,并利用标准库函数简化了一些操作。 --- ### 小结 三种语言的核心思想一致,均采用了一种简单的线性扫描方式完成任务。这种方法不仅易于理解,而且性能优越,在实际应用中非常实用[^2]。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值