Harvest of Apples(hdu 6333 莫队求C(n,0)+C(n,1)+...+C(n,k))

本文介绍了一个名为苹果收获问题的算法题目,并详细解释了如何利用莫队算法解决该问题。通过分块技术和组合数模板,实现了时间复杂度为O(nsqrt(n))的有效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:Problem B. Harvest of Apples

题意:给定n,m,求  \sum_{i=0}^{m} C(n,i))  ;

思路:设S(n,m) = \sum_{i=0}^{m} C(n,i)),那么S(n,k)=S(n,k-1)+C(n,k); S(n,k)=2*S(n-1,k)-C(n-1,k);由此,我们得到了S(n,k),S(n-1,k),S(n,k-1)这3个状态互相转移的方程,使用莫队求解。莫队复杂度为O(nsqrt(n)),本题中m<=n,所以用m来分块更优。

#include <iostream>
#include <string>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <set>
#include <algorithm>
using namespace std;

typedef long long ll;

const int MAX = 1e5+10;
const int MOD=1e9+7;

typedef struct{
    int n,m;
    int id;
    int block;//所属块
}Point;

Point a[MAX];
ll out[MAX];

//****组合数模板****
ll F[MAX], Finv[MAX], inv[MAX];//F是阶乘,Finv是逆元的阶乘

void init(){
    inv[1] = 1;
    for(int i = 2; i < MAX; i ++){
        inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
    }
    F[0] = Finv[0] = 1;
    for(int i = 1; i < MAX; i ++){
        F[i] = F[i-1] * 1ll * i % MOD;
        Finv[i] = Finv[i-1] * 1ll * inv[i] % MOD;
    }
}

ll comb(int n, int m){//comb(n, m)就是C(n, m)
    if(m < 0 || m > n) return 0;
    return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}
//******************

bool cmp(Point x,Point y)
{
    return x.block==y.block?x.n<y.n:x.m<y.m;
}

int main()
{
    int T;
    scanf("%d",&T);
    init();
    int unit=sqrt(1e5); //块大小
    for(int i=1;i<=T;i++)
    {
        scanf("%d%d",&a[i].n,&a[i].m);
        a[i].id=i;
        a[i].block=a[i].m/unit; //根据m分块
    }
    sort(a+1,a+T+1,cmp);
    int nn=1,mm=0;
    ll ans=1;
    for(int i=1;i<=T;i++)
    {
        while(nn<a[i].n){
            ans=(2*ans%MOD-comb(nn,mm)+MOD)%MOD;
            nn++;
        }
        while(nn>a[i].n){
            nn--;
            ans=(ans+comb(nn,mm))%MOD*inv[2]%MOD;
        }
        while(mm<a[i].m){
            mm++;
            ans=(ans+comb(nn,mm))%MOD;
        }
        while(mm>a[i].m){
            ans=(ans-comb(nn,mm)+MOD)%MOD;
            mm--;
        }
        out[a[i].id]=ans;
    }
    for(int i=1;i<=T;i++)
        printf("%lld\n",out[i]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值