CNTK中GPU信息的获取

本文介绍如何在CNTK中获取GPU设备信息,包括设备号、名称、版本号、CUDA核心数及总显存,并演示如何使用trace功能监控GPU内存的分配与释放。
部署运行你感兴趣的模型镜像

CNTK中GPU信息的获取

device接口

CNTK提供了device接口,可以访问gpu的几个基本参数。

获取所有的设备

首先可以通过cntk.device.all_devices方法来获取当前的设备

>>> C.device.all_devices()
(GPU[0] GeForce GTX 960M, CPU)

获取GPU

知道了系统里有多少设备了之后,就可以通过设备号来通过device.gpu来访问GPU设备了。
例:

>>> C.device.gpu(0)
GPU[0] GeForce GTX 960M

GPU属性

通过device.gpu(id)获取了gpu的引用之后,我们就可以通过device.get_gpu_properties函数来获取属性:

>>> prop = C.device.get_gpu_properties(C.device.gpu(0))
>>> prop
<cntk.cntk_py.GPUProperties; proxy of <Swig Object of type 'CNTK::GPUProperties *' at 0x000001A1195C3420> >

属性有:

  • device_id: 设备号
  • name: 名字
  • version_major: 主版本号
  • version_minor: 副版本号
  • cuda_cores: CUDA核
  • total_memory: 显存大小

例:

>>> prop.name
'GeForce GTX 960M'
>>> prop.version_major
5
>>> prop.version_minor
0
>>> prop.cuda_cores
960
>>> prop.total_memory
2048
>>> prop.device_id
0

如何监控GPU内存的分配与释放

如果想要监控内存使用情况的话,上面的简单的API是不够用的,我们使用trace功能吧:

C.cntk_py.set_gpumemory_allocation_trace_level(1)

例,运行时打印出来的效果是这样的:

Allocating Matrix<float> (Rows = 1, Cols = 5416) buffer on DeviceId = 0; GPU Memory Free = 29 MB of 2048 MB
Allocated DeviceData = 000000050323AA00
Allocating Matrix<float> (Rows = 1, Cols = 8124) buffer on DeviceId = 0; GPU Memory Free = 29 MB of 2048 MB
Allocated DeviceData = 0000000504E17A00
Allocating Matrix<float> (Rows = 1, Cols = 5416) buffer on DeviceId = 0; GPU Memory Free = 29 MB of 2048 MB
Allocated DeviceData = 0000000502A38E00
Freed buffer<float> DeviceData = 0000000502A38E00 on DeviceId = 0; GPU Memory Free = 29 MB of 2048 MB
Freed buffer<float> DeviceData = 0000000504E17A00 on DeviceId = 0; GPU Memory Free = 29 MB of 2048 MB
Freed buffer<float> DeviceData = 000000050323AA00 on DeviceId = 0; GPU Memory Free = 29 MB of 2048 MB
Freed buffer<float> DeviceData = 0000000567440000 on DeviceId = 0; GPU Memory Free = 98 MB of 2048 MB
Allocating Matrix<float> (Rows = 650, Cols = 8124) buffer on DeviceId = 0; GPU Memory Free = 98 MB of 2048 MB
Allocated DeviceData = 0000000541BC0000
Freed buffer<char> DeviceData = 0000000502B3E600 on DeviceId = 0; GPU Memory Free = 78 MB of 2048 MB
Allocating Matrix<float> (Rows = 650, Cols = 5416) buffer on DeviceId = 0; GPU Memory Free = 78 MB of 2048 MB
Allocated DeviceData = 0000000543000000
Allocating Matrix<float> (Rows = 1, Cols = 5416) buffer on DeviceId = 0; GPU Memory Free = 65 MB of 2048 MB
Allocated DeviceData = 000000050323AA00
Freed buffer<float> DeviceData = 000000050323AA00 on DeviceId = 0; GPU Memory Free = 65 MB of 2048 MB
Freed buffer<float> DeviceData = 0000000543000000 on DeviceId = 0; GPU Memory Free = 78 MB of 2048 MB
Allocating Matrix<char> (Rows = 1, Cols = 5416) buffer on DeviceId = 0; GPU Memory Free = 78 MB of 2048 MB
Allocated DeviceData = 0000000502B3E600
Freed buffer<float> DeviceData = 0000000541BC0000 on DeviceId = 0; GPU Memory Free = 98 MB of 2048 MB
Allocating Matrix<float> (Rows = 650, Cols = 8066) buffer on DeviceId = 0; GPU Memory Free = 98 MB of 2048 MB
Allocated DeviceData = 0000000541BC0000
Allocating Matrix<float> (Rows = 1, Cols = 8066) buffer on DeviceId = 0; GPU Memory Free = 78 MB of 2048 MB
Allocated DeviceData = 0000000504E17A00
Freed buffer<float> DeviceData = 0000000504E17A00 on DeviceId = 0; GPU Memory Free = 78 MB of 2048 MB
Freed buffer<float> DeviceData = 0000000541BC0000 on DeviceId = 0; GPU Memory Free = 98 MB of 2048 MB
Allocating Matrix<float> (Rows = 3377, Cols = 1) buffer on DeviceId = 0; GPU Memory Free = 98 MB of 2048 MB
Allocated DeviceData = 00000005050DCA00
Freed buffer<float> DeviceData = 00000005050DCA00 on DeviceId = 0; GPU Memory Free = 98 MB of 2048 MB
Allocating Matrix<float> (Rows = 3377, Cols = 8066) buffer on DeviceId = 0; GPU Memory Free = 98 MB of 2048 MB

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jtag特工

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值