lightgbm模型是微软开源的一个模型,比xgboost快个10倍左右,原始训练使用的是c++,也提供了python接口,晚上摸索了下lightgbm在python中训练,转化为pmml语言,在java中调用,过程碰到不少坑,记录下,
首先是 git clone https://github.com/jpmml/jpmml-lightgbm/tree/master/src/main/java/org/jpmml/lightgbm
进行mvn clean install打包,在target目录下会生成一个converter-executable-1.2-SNAPSHOT.jar jar包,实际这个项目就是一老外加载lightgbm模型写的一个项目,也不用直接转化为pmml调用,直接加载模型做预测就可以,既然这里讲了还是要说下转化为pmml的形式,首先确保llightgbm的版本是目前最新版本,看下我的:
In [3]: lgb.__version__
Out[3]: '2.1.0'
在python中训练代码,数据还是用的鸾尾花数据:
import pandas as pd
from lightgbm import LGBMClassifier
iris_df = pd.read_csv("xml/iris.csv")
d_x = iris_df.iloc[:, 0:4].values
d_y = iris_df.iloc[:, 4].values
model = LGBMClassifier(
boosting_type='gbdt', objective="multiclass", nthread=8, seed=42)
model.n_classes =3
model.fit(d_x,d_y,feature_name=iris_df.columns.tolist()[0:-1])
model.booster_.save_model("xml/lightgbm.txt")
cd target
java -jar converter-executable-1.2-SNAPSHOT.jar --lgbm-input /Users/shuubiasahi/Documents/python/credit-tfgan/xml/lightgbm.txt --pmml-output /Users/shuubiasahi/Documents/python/credit-tfgan/xml/lightgbm.pmml
其中output就是pmml文件,在java中调用,和上一篇提到的一模一样:
package com.meituan.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import org.dmg.pmml.FieldName;
import org.dmg.pmml.PMML;
import org.jpmml.evaluator.Evaluator;
import org.jpmml.evaluator.FieldValue;
import org.jpmml.evaluator.InputField;
import org.jpmml.evaluator.ModelEvaluator;
import org.jpmml.evaluator.ModelEvaluatorFactory;
import org.jpmml.evaluator.TargetField;
public class PMMLPrediction {
public static void main(String[] args) throws Exception {
String pathxml="/Users/shuubiasahi/Documents/python/credit-tfgan/xml/lightgbm.pmml";
Map<String, Double> map=new HashMap<String, Double>();
map.put("sepal_length", 5.1);
map.put("sepal_width", 3.5);
map.put("petal_length", 1.4);
map.put("petal_width", 0.2);
predictLrHeart(map, pathxml);
}
public static void predictLrHeart(Map<String, Double> irismap,String pathxml)throws Exception {
PMML pmml;
// 模型导入
File file = new File(pathxml);
InputStream inputStream = new FileInputStream(file);
try (InputStream is = inputStream) {
pmml = org.jpmml.model.PMMLUtil.unmarshal(is);
ModelEvaluatorFactory modelEvaluatorFactory = ModelEvaluatorFactory
.newInstance();
ModelEvaluator<?> modelEvaluator = modelEvaluatorFactory
.newModelEvaluator(pmml);
Evaluator evaluator = (Evaluator) modelEvaluator;
List<InputField> inputFields = evaluator.getInputFields();
// 过模型的原始特征,从画像中获取数据,作为模型输入
Map<FieldName, FieldValue> arguments = new LinkedHashMap<>();
for (InputField inputField : inputFields) {
FieldName inputFieldName = inputField.getName();
Object rawValue = irismap
.get(inputFieldName.getValue());
FieldValue inputFieldValue = inputField.prepare(rawValue);
arguments.put(inputFieldName, inputFieldValue);
}
Map<FieldName, ?> results = evaluator.evaluate(arguments);
List<TargetField> targetFields = evaluator.getTargetFields();
//对于分类问题等有多个输出。
for (TargetField targetField : targetFields) {
FieldName targetFieldName = targetField.getName();
Object targetFieldValue = results.get(targetFieldName);
System.err.println("target: " + targetFieldName.getValue()
+ " value: " + targetFieldValue);
}
}
}
}
target: _target value: ProbabilityDistribution{result=0, probability_entries=[0=0.9999390264428791, 1=4.2310667715858895E-5, 2=1.866288940503745E-5]}