k-近邻算法
k-近邻算法采用不同特征之间的距离方法进行分类。在训练样本集中每条记录都存在标签,样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的特征值和样本集中数据对应的特征进行比较。一般情况,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。以电影分类为例,电影特征空间为打斗镜头和接吻镜头。
电影名称 | 打斗镜头 | 接吻镜头 | 电影类型 |
---|---|---|---|
canifonia man | 3 | 104 | 爱情电影 |
He is Not Really into Dudes | 2 | 100 | 爱情电影 |
Beautiful Woman | 1 | 81 | 爱情电影 |
Kevin Longblade | 101 | 10 | 动作电影 |
Robo Slayer 3000 | 99 | 5 | 动作片 |
Amped II | 98 | 2 | 动作片 |
Ni Dongde | 100 | 100 | 爱情动作片 |
To be Predicted | 3 | 60 | ? |
最后一条记录是待预测的电影,计算待预测电影和带有标签的记录之间的距离,找到距离最近的k近邻个电影,在k近邻中类型分布最多的电影标签即为待预测电影的类型。显然知道待预测的电影类型是动作片。
1. 收集数据
2. 准备数据
3. 分析数据
4. 计算距离
5. 距离排序
6. k近邻样本投票
示例代码
from numpy import *
import operator
# k近邻分类,对k近邻进行投票分类
def classify0(inX, dataSet, labels, k):
# get the dimention of dataSet
dataSetSize = dataSet.shape[0]
# create diffMat (dataSetSize * 1)
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistance = sqDiffMat.sum(axis = 1)
distances = sqDistance**0.5
# get the index array of distances sorted
sortedDistIndices = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndices[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key = operator.itemgetter(1), reverse = True)
# sortedClassCount = sorted(classCount.itertems(), key = lambda d: d[1], reverse = True)
return sortedClassCount[0][0]
# 从文件中读入数据到数组中
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines, 3))
classLabelVector = []
index = 0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(listFromLine[-1])
index += 1
return returnMat, classLabelVector
# 不同属性分布差别较大,需进行归一化
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals,(m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet,ranges, minVals
# 分类测试
def datingClassTest():
hoRatio = 0.10
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 3)
print('the classifier cameback with: %s, the real answer is: %s' %(classifierResult, datingLabels[i]))
if(classifierResult!=datingLabels[i]):
errorCount +=1.0
print("the total error rate is: %f" %(errorCount/float(numTestVecs)))
def classifyPerson():
resultList = ['not at all','in small doses', 'in large doses']
percenTats = float(input('percentage of time spent playing video games?'))
ffMiles = float(input('frequent filter miles earned per year?'))
iceCream = float(input('liters of ice cream consumed per year?'))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percenTats, iceCream])
classifierResult = classify0((inArr-minVals)/ranges, normMat, datingLabels, 3)
print("You will probably like this person:", resultList[int(classifierResult) - 1])
# 图像数据转为向量,图像以文本方式存储
def img2vector(filename):
returnVect = zeros((1, 1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0, 32*i + j] = int(lineStr[j])
return returnVect
# 对文本数字进行分类
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m, 1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print('the classifier came back with: %d, the real answer is: %d' %(classifierResult,classNumStr))
if(classifierResult != classNumStr):
errorCount += 1.0
print('\nthe total number of errors is: %d' % errorCount)
print('\nthe total error rate is: %f' % (errorCount/float(mTest)))
#对文本分类进行测试
handwritingClassTest()
the total number of errors is: 13
the total error rate is: 0.013742
算法特点
优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间
适用数据范围:数值型和标称型
k近邻算法思路较为简单,自己感觉效率一般