VGG16论文链接: https://arxiv.org/abs/1409.1556 收录于ICLR2015
网络结构和配置:
作者在这篇论文中主要探讨的是使用非常小的卷积核(3*3)来增加卷积神经网络的深度对于性能有很大的提升。如Table 1所示,作者设置了A-E五种卷积神经网络配置来探讨深度对于性能的影响。结构D和E就是我们熟知的VGG16(13个卷积层+3个全连接层)和VGG19(16个卷积层+3个全连接层)。PS:层数是没有包含maxpool的
这些网络都遵循一种通用的设计,输入到网络的是一个固定大小的224*224的RGB图像,所做的唯一预处理是从每个像素减去基于训练集的平均RGB值。图像通过一系列的卷积层时,全部使用3*3大小的卷积核。只有在配置C中,作者使用了1*1的卷积核,这可以被看作是输入通道的线性映射(接着是非线性)。卷积的步长均为1,padding也为1。每个网络配置都是5个最大池化层,最大池化的窗口大小为2*2,步长为2。
卷积层之后是三个完全连接(FC)层:前两层有4096个通道,第三个层执行的是1000路ILSVRC分类,因此包含1000个通道(每个类一个)。最后一层是softmax层。在A-E所有网络