#include <iostream>
#include <stdio.h>
using namespace std;
#define NUM 51
int p[NUM];
int m[NUM][NUM];
int s[NUM][NUM];
void MatrixChain(int n)
{
for (int i = 1; i <= n; i++) m[i][i] = 0;
for (int r = 2; r <= n; r++)
for (int i = 1; i <= n - r + 1; i++)
{
int j = i + r - 1;
//计算初值,从i处断开
m[i][j] = m[i + 1][j] + p[i - 1] * p[i] * p[j];//r=1时可以计算出所有相邻矩阵的乘积
s[i][j] = i;
for (int k = i + 1; k<j; k++)//通过循环判断各种组合大小
{
int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
if (t < m[i][j]) { m[i][j] = t; s[i][j] = k; }
}
}
}
void TraceBack(int i, int j)
{
if (i == j) printf("A%d", i);
else
{
printf("(");
TraceBack(i, s[i][j]);//s[i][j]表示A[i]+....A[j]中的最佳分割点。此处分割为
TraceBack(s[i][j] + 1, j);//分割的后一部分
printf(")");
}
}
int main() {
int x, i = 1;
while (cin >> x) {
p[i++] = x;
}
MatrixChain(i - 1);
TraceBack(1, i - 1);
return 0;
}
简化版的两种
int Recurve(int i, int j)
{
if (i == j) return 0;
int u = Recurve(i, i)+Recurve(i+1,j)+p[i-1]*p[i]*p[j];
s[i][j] = i;
for (int k = i+1; k<j; k++)
{
int t = Recurve(i, k) + Recurve(k+1,j)+p[i-1]*p[k]*p[j];
if (t<u) { u = t; s[i][j] = k;}
}
m[i][j] = u;
return u;
}
int LookupChain (int i, int j)
{
if (m[i][j]>0) return m[i][j];
if (i==j) return 0;
int u = LookupChain(i,i)+LookupChain(i+1,j)+p[i-1]*p[i]*p[j];
s[i][j] = i;
for (int k = i+1; k<j; k++)
{
int t = LookupChain(i,k)+LookupChain(k+1,j)+p[i-1]*p[k]*p[j];
if (t < u) { u = t; s[i][j] = k;}
}
m[i][j] = u;
return u;
}