Codeforces 609D Gadgets for dollars and pounds 二分答案

本文介绍了如何利用二分查找技术解决在不同货币汇率变化中,以最少天数购买指定商品的问题。通过预处理获取各商品在不同天数的最低价格,最终确定最优购买方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

  • 有m种商品,可以购买,每种商品只能用美元或英镑二者其一购买
  • 你现在有s元,既不是美元,也不是英镑,需要兑换才能购买
  • 你需要买k种商品
  • 你可以在n天里进行购买,每天的汇率不同,汇率告诉你
  • 问你花费最少多少天,可以完成购买任务。

思路

  • 二分答案,对于第x天,计算它最少的花费f(x),<=s就是可行的,这是一个单调的函数,所以可以二分。
  • 对于f(x)的计算,我用了nlog(n)的算法,遍历m个商品,用c[i]乘以前x天里,第t[i]种货币的最便宜的价格,存放到一个数组里,之后排序,计算前k个的和就是f(x)
  • 前x天里,第t[i]种货币的最便宜的价格是通过预处理得到的,很容易的计算一下前缀最小值就行了。

实现

#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <algorithm> 
using namespace std;
typedef long long ll;
typedef pair<ll,int> pii;
#define fi first
#define se second
#define mp make_pair
const int maxn = 200005;
int a[maxn],b[maxn],t[maxn],c[maxn];
int n,m,k,s;
int am[maxn],bm[maxn];
int ida[maxn],idb[maxn];
const int inf = 0x3f3f3f3f;

pii pli[maxn];
int id[maxn];

ll f(int x){
    ll ret = 0;
    for (int i=1;i<=m;i++){
        if (t[i] == 1){
            pli[i].fi = (ll)c[i] * (ll)am[x];

        }
        else{
            pli[i].fi = (ll)c[i] * (ll)bm[x];
        }
        pli[i].se = i;
    }
    sort(pli+1,pli+m+1);
    for (int i=1;i<=k;i++){
        ret += pli[i].fi;
    } 

    return ret;
}


int main(){
    cin>>n>>m>>k>>s;
    am[0] = bm[0] = inf;
    for (int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        if (a[i] < am[i-1]){
            am[i] = a[i];
            ida[i] = i;
        }
        else{
            am[i] = am[i-1];
            ida[i] = ida[i-1];
        }
    }
    for (int i=1;i<=n;i++){
        scanf("%d",&b[i]);
        if (b[i] < bm[i-1]){
            bm[i] = b[i];
            idb[i] = i;
        }
        else{
            bm[i] = bm[i-1];
            idb[i] = idb[i-1];
        }
    }
    for (int i=1;i<=m;i++){
        scanf("%d%d",&t[i],&c[i]);
    }

    ll low,high,mid;
    low = 1,high = n;
    ll d = -1;
    while(low <= high){
        mid = (low + high) / (ll)2;
        if (f(mid) <= s){
            high = mid - 1;
            d = mid;
            for (int i=1;i<=k;i++){
                id[i] = pli[i].se;
            }
        }
        else{
            low = mid + 1;
        }
    }
    cout << d <<"\n";
    if (d == (ll)-1)
        return 0;
    int x = (int)d;
    for (int i=1;i<=k;i++){
        printf("%d %d\n",id[i],t[id[i]]==1?ida[x]:idb[x]);
    }

    return 0;
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值