题目:
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
解答:
和之前的BST找LCA有相似之处,不同的是BST有特性可以更加方便的查找,一般的二叉树则没有,需要利用前序遍历来进行查找,总体的思路就是在递归的同时如果出现了查找的目标就将其返回,没有就返回NULL,直到找到LCA即可(看代码就懂了,不是很善于口头描述),一开始还傻傻的把整个搜索路径保存下来了,(⊙﹏⊙)b。。。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == NULL || root == q || root == p)
return root;
TreeNode *left = lowestCommonAncestor(root->left, p, q);
TreeNode *right = lowestCommonAncestor(root->right, p, q);
if(left && right)//表示已经找到了LCA
return root;
if(left == NULL)
return right;
if(right == NULL)
return left;
}
};