题目:
WFF 'N PROOF is a logic game played with dice. Each die has six faces representing some subset of the possible symbols K, A, N, C, E, p, q, r, s, t. A Well-formed formula (WFF) is any string of these symbols obeying the following rules:
- p, q, r, s, and t are WFFs
- if w is a WFF, Nw is a WFF
- if w and x are WFFs, Kwx, Awx, Cwx, and Ewx are WFFs.
- p, q, r, s, and t are logical variables that may take on the value 0 (false) or 1 (true).
- K, A, N, C, E mean and, or, not, implies, and equals as defined in the truth table below.
|
|
| w x | Kwx | Awx | Nw | Cwx | Ewx |
| 1 1 | 1 | 1 | 0 | 1 | 1 |
| 1 0 | 0 | 1 | 0 | 0 | 0 |
| 0 1 | 0 | 1 | 1 | 1 | 0 |
| 0 0 | 0 | 0 | 1 | 1 | 1 |
A tautology is a WFF that has value 1 (true) regardless of the values of its variables. For example, ApNp is a tautology because it is true regardless of the value of p. On the other hand, ApNq is not, because it has the value 0 for p=0, q=1.
You must determine whether or not a WFF is a tautology.
Input
Input consists of several test cases. Each test case is a single line containing a WFF with no more than 100 symbols. A line containing 0 follows the last case.
Output
For each test case, output a line containing tautology or not as appropriate.
Sample Input
ApNp ApNq 0
Sample Output
tautology not
#include<iostream>
#include<stdio.h>
#include<stack>
#include<string.h>
using namespace std;
stack<int> digit;
int len;
char temp[110];
// p, q, r, s, t
int d[6];
bool isOpe(char c){ //K, A, N, C, E
if('K'==c||'A'==c||'N'==c||'C'==c||'E'==c) return true;
return false;
}
bool solve(){
int i;
int op1,op2;
for(i=len-1;i>=0;i--){
// cout<<"i="<<i<<" ->"<<temp[i]<<endl;
if(isOpe(temp[i])){ //如果是操作符,进行运算
switch(temp[i]){
case 'K':{
op2=digit.top();
digit.pop();
op1=digit.top();
digit.pop();
if(op1&&op2) digit.push(1);
else digit.push(0);
break;
}
case 'A':{
op2=digit.top();
digit.pop();
op1=digit.top();
digit.pop();
if(op1||op2) digit.push(1);
else digit.push(0);
break;
}
case 'N':{
op1=digit.top();
digit.pop();
if(op1) digit.push(0);
else digit.push(1);
break;
}
case 'C':{
op1=digit.top();
digit.pop();
op2=digit.top();
digit.pop();
if(op1==1&&op2==0) digit.push(0);
else digit.push(1);
break;
}
case 'E':{
op2=digit.top();
digit.pop();
op1=digit.top();
digit.pop();
if(op1==op2) digit.push(1);
else digit.push(0);
break;
}
}
}else{
switch(temp[i]){
case 'p':
digit.push(d[0]);
break;
case 'q':
digit.push(d[1]);
break;
case 'r':
digit.push(d[2]);
break;
case 's':
digit.push(d[3]);
break;
case 't':
digit.push(d[4]);
break;
}
}
}
int ans=digit.top();
if(ans) return true;
return false;
}
bool change(){
d[0]++;
int i;
i=0;
while(i<5){
if(d[i]>=2){
d[i+1]++;
d[i]-=2;
}
i++;
}
if(d[5]) return true;
return false;
}
int main(){
while(scanf("%s",temp),temp[0]!='0'){
len=strlen(temp);
// printf("%s %d\n",temp,len);
while(!digit.empty()){
digit.pop();
}
memset(d,0,sizeof(d));
bool res;
while(1){
res=solve();
if(!res) break;
if(change()) break;
}
if(res) printf("tautology\n");
else printf("not\n");
}
return 0;
}
实现时使用堆栈,简化操作。注意每个运算符操作的是右边离他最近的2个数,不要把操作数和操作符分开存储,之前写的代码是把操作数和操作符分开,导致代码出错。
本文介绍了一种名为WFF'nProof的逻辑游戏,玩家通过骰子上的符号组合成逻辑公式,并判断这些公式是否为恒真式。文章详细解释了游戏规则及逻辑运算符的定义,并提供了一个算法示例来解决这一问题。
401

被折叠的 条评论
为什么被折叠?



