本文假设读者已经配置好caffe的基本环境。
一、运行手写体数字识别Demo
1.在caffe跟目录下执行以下命令,下载所需文件
dnn@DNN:~/caffe$ cd data/mnist/
dnn@DNN:~/caffe/data/mnist$ ./get_mnist.sh
dnn@DNN:~/caffe/data/mnist$ tree
.
├── get_mnist.sh
├── t10k-images-idx3-ubyte
├── t10k-labels-idx1-ubyte
├── train-images-idx3-ubyte
└── train-labels-idx1-ubyte
2.回到caffe根目录,执行一下命令,将下载的文件转换为LMDB文件
dnn@DNN:~/caffe$ ./examples/mnist/create_mnist.sh
3.在根目录执行以下命令对模型进行训练
dnn@DNN:~/caffe$ ./examples/mnist/train_lenet.sh
4.用训练好的模型对数据进行预测
dnn@DNN:~/caffe$ ./build/tools/caffe.bin test -model examples/mnist/lenet_train_test.prototxt -weights examples/mnist/lenet_iter_10000.caffemodel -iterations 100
结果如下:
I0405 16:20:22.532732 5084 caffe.cpp:308] Batch 98, loss = 0.00556712
I0405 16:20:22.570906 5084 caffe.cpp:308] Batch 99, accuracy = 0.99
I0405 16:20:22.570940 5084 caffe.cpp:308] Batch 99, loss = 0.0155181
I0405 16:20:22.570955 5084 caffe.cpp:313] Loss: 0.0287495
I0405 16:20:22.570968 5084 caffe.cpp:325] accuracy = 0.9906
I0405 16:20:22.570981 5084 caffe.cpp:325] loss = 0.0287495 (* 1 = 0.0287495 loss)
二、运行ilsvrc12识别小猫咪的Demo
1.在根目录下运行以下命令获取meta数据
dnn@DNN:~/caffe$ cd data/ilsvrc12/
dnn@DNN:~/caffe/data/ilsvrc12$ ./get_ilsvrc_aux.sh
2.下载caffenet模型
dnn@DNN:~/caffe/data/ilsvrc12$ cd ../../models/bvlc_reference_caffenet/
dnn@DNN:~/caffe/models/bvlc_reference_caffenet$ wget http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
3.预测小猫咪图片
其中有些数据需要到这个网站下载:http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz
./build/examples/cpp_classification/classification.bin models/bvlc_reference_caffenet/deploy.prototxt models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel data/ilsvrc12/imagenet_mean.binaryproto data/ilsvrc12/synset_words.txt examples/images/cat.jpg
预测结果如下:
---------- Prediction for examples/images/cat.jpg ----------
0.3134 - "n02123045 tabby, tabby cat"
0.2380 - "n02123159 tiger cat"
0.1235 - "n02124075 Egyptian cat"
0.1003 - "n02119022 red fox, Vulpes vulpes"
0.0715 - "n02127052 lynx, catamount"
本文介绍如何使用Caffe深度学习框架进行手写数字识别与图像分类任务。首先,通过一系列步骤演示如何训练MNIST数据集上的LeNet模型,并评估其准确率。其次,展示如何利用预训练的Caffenet模型对ImageNet数据集中的图片进行分类。
5163

被折叠的 条评论
为什么被折叠?



