tf.Variable()
W = tf.Variable(<initial-value>, name=<optional-name>)
用于生成一个初始值为initial-value的变量。必须指定初始化值
tf.get_variable()
W = tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None,
regularizer=None, trainable=True, collections=None)
获取已存在的变量(要求不仅名字,而且初始化方法等各个参数都一样),如果不存 在,就新建一个。 可以用各种初始化方法,不用明确指定值。
区别
推荐使用tf.get_variable(), 因为:
- 初始化更方便
比如用xavier_initializer:
W = tf.get_variable("W", shape=[784, 256],
initializer=tf.contrib.layers.xavier_initializer())
- 方便共享变量
因为tf.get_variable() 会检查当前命名空间下是否存在同样name的变量,可以方便共享变量。而tf.Variable 每次都会新建一个变量。
需要注意的是tf.get_variable() 要配合reuse和tf.variable_scope() 使用。
- 举个例子
4.1 首先介绍一下tf.variable_scope().
如果已经存在的变量没有设置为共享变量,TensorFlow 运行到第二个拥有相同名字的变量的时候,就会报错。为了解决这个问题,TensorFlow 提出了 tf.variable_scope 函数:它的主要作用是,在一个作用域 scope 内共享一些变量,举个简单的栗子:
with tf.variable_scope("foo"):
v = tf.get_variable("v", [1]) #v.name == "foo/v:0"
简单来说就是给变量名前再加了个变量空间名。
4.2 对比
接下来看看怎么用tf.get_variable()实现共享变量:
with tf.variable_scope("one"):
a = tf.get_variable("v", [1]) #a.name == "one/v:0"
with tf.variable_scope("one"):
b = tf.get_variable("v", [1]) #创建两个名字一样的变量会报错 ValueError: Variable one/v already exists
with tf.variable_scope("one", reuse = True): #注意reuse的作用。
c = tf.get_variable("v", [1]) #c.name == "one/v:0" 成功共享,因为设置了reuse
assert a==c #Assertion is true, they refer to the same object.
然后看看如果用tf.Variable() 会有什么效果:
with tf.variable_scope("two"):
d = tf.get_variable("v", [1]) #d.name == "two/v:0"
e = tf.Variable(1, name = "v", expected_shape = [1]) #e.name == "two/v_1:0"
assert d==e #AssertionError: they are different objects
可以看到,同样的命名空间(‘two’)和名字(v),但是d和e的值却不一样。
PS:初始化的方式有以下几种:
tf.constant_initializer:常量初始化函数
tf.random_normal_initializer:正态分布
tf.truncated_normal_initializer:截取的正态分布
tf.random_uniform_initializer:均匀分布
tf.zeros_initializer:全部是0
tf.ones_initializer:全是1
tf.uniform_unit_scaling_initializer:满足均匀分布,但不影响输出数量级的随机值