使用opencv实现图像中几何图形检测

本文讲述了OpenCV中进行轮廓提取、多边形逼近和形状识别的过程,用于图像分析和特征提取。

1 几何图形检测介绍

1.1 轮廓(contours)

什么是轮廓,简单说轮廓就是一些列点相连组成形状、它们拥有同样的颜色、轮廓发现在图像的对象分析、对象检测等方面是非常有用的工具,在OpenCV
中使用轮廓发现相关函数时候要求输入图像是二值图像,这样便于轮廓提取、边缘提取等操作。轮廓发现的函数与参数解释如下:

函数原型:

findContours(image, mode, method, contours=None, hierarchy=None, offset=None)

参数:

  • image输入/输出的二值图像
  • mode 迒回轮廓的结构、可以是List、Tree、External
  • method 轮廓点的编码方式,基本是基于链式编码
  • contours 迒回的轮廓集合
  • hieracrchy 迒回的轮廓层次关系
  • offset 点是否有位移

1.2 多边形逼近

多边形逼近,是通过对轮廓外形无限逼近,删除非关键点、得到轮廓的关键点,不断逼近轮廓真实形状的方法,OpenCV中多边形逼近的函数与参数解释如下:

函数原型:

approxPolyDP(curve, epsilon, closed, approxCurve=None)

参数:

  • curve 表示输入的轮廓点集合
  • epsilon 表示逼近曲率,越小表示相似逼近越厉害
  • close 是否闭合

1.3 几何距计算

图像几何距是图像的几何特征,高阶几何距中心化之后具有特征不变性,可以产生Hu距输出,用于形状匹配等操作,这里我们通过计算一阶几何距得到指定轮廓的中心位置,计算几何距的函数与参数解释如下:

函数原型:

moments(array, binaryImage=None)

参数:

  • array表示指定输入轮廓
  • binaryImage默认为None

2 基于opencv实现几何图形检测

整个代码实现分为如下几步完成

  • 加载图像,
  • 图像二值化
  • 轮廓发现
  • 几何形状识别
  • 测量周长、面积、计算中心
  • 颜色提取

2.1 加载图像并进行二值化处理

的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。

一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(Binarization)。

函数原型:

def threshold(src: Any,thresh: Any,maxval: Any,type: Any,dst: Any = None) -> None

src:源图像,可以为8位的灰度图,也可以为32位的彩色图像。(两者由区别)

dst:输出图像

thresh:阈值

maxval:dst图像中最大值

type:阈值类型,可以具体类型如下:

           enum ThresholdTypes {THRESH_BINARY     = 0,  

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源启智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值