1 深度学习中的张量
在深度学习框架中,Tensor(张量)是一种数据结构,用于存储和操作多维数组。张量可以被视为一种扩展的矩阵,它可以具有任意数量的维度。
在深度学习中,张量通常被用来表示神经网络的输入、输出、权重和梯度等数据。在深度学习框架中,张量是一个重要的概念,因为它是深度学习计算的基本单位。
张量可以用不同的数据类型表示,如浮点型、整型等。在深度学习框架中,通常使用GPU来加速张量的计算,因为GPU具有并行计算能力,可以快速地执行大量的矩阵和向量运算。
深度学习框架通常提供了一些张量操作函数,如矩阵乘法、卷积、池化等,使得用户可以方便地进行张量计算。
2 张量的基本属性
主要有三个属性:秩、轴、形状
- 秩:主要告诉我们是张量的维度,其实就是告诉我们是几维向量,通过多少个索引就可以访问到元素。
- 轴:在张量中,轴是指张量的一个维度。当处理多维数据时,每个维度都可以被称为一个轴。通常,第一个轴称为0轴(或轴0),第二个轴称为1轴(或轴1),以此类推。
- 形状:形状是指张量在每个轴上的维度大小。它是一个由整数组成的元组,表示张量沿着每个轴的大小。
3 张量的维度

3.1 标量(0D 张量)
仅包含一个数字的张量叫作标量(scalar,也叫标量张量、零维张量、0D 张量)。在 Numpy中,一个 float32 或 float64 的数字就是一个标量张量(或标量数组)。你可以用 ndim 属性来查看一个 Numpy 张量的轴的个数。标量张量有 0 个轴( ndim == 0 )。张量轴的个数也叫作阶(rank)。下面是一个 Numpy 标量。
import numpy as np

本文介绍了深度学习中张量的概念,包括张量的定义、基本属性(秩、轴和形状)、不同维度的张量(标量、向量、矩阵和高维张量)以及它们在现实世界数据中的应用,如向量数据、时间序列、图像和视频数据的表示。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



