深度学习中的张量维度

本文介绍了深度学习中张量的概念,包括张量的定义、基本属性(秩、轴和形状)、不同维度的张量(标量、向量、矩阵和高维张量)以及它们在现实世界数据中的应用,如向量数据、时间序列、图像和视频数据的表示。

1 深度学习中的张量

在深度学习框架中,Tensor(张量)是一种数据结构,用于存储和操作多维数组。张量可以被视为一种扩展的矩阵,它可以具有任意数量的维度。

在深度学习中,张量通常被用来表示神经网络的输入、输出、权重和梯度等数据。在深度学习框架中,张量是一个重要的概念,因为它是深度学习计算的基本单位。

张量可以用不同的数据类型表示,如浮点型、整型等。在深度学习框架中,通常使用GPU来加速张量的计算,因为GPU具有并行计算能力,可以快速地执行大量的矩阵和向量运算。

深度学习框架通常提供了一些张量操作函数,如矩阵乘法、卷积、池化等,使得用户可以方便地进行张量计算。

2 张量的基本属性

主要有三个属性:秩、轴、形状

  • 秩:主要告诉我们是张量的维度,其实就是告诉我们是几维向量,通过多少个索引就可以访问到元素。
  • 轴:在张量中,轴是指张量的一个维度。当处理多维数据时,每个维度都可以被称为一个轴。通常,第一个轴称为0轴(或轴0),第二个轴称为1轴(或轴1),以此类推。
  • 形状:形状是指张量在每个轴上的维度大小。它是一个由整数组成的元组,表示张量沿着每个轴的大小。
     

3 张量的维度

3.1 标量(0D 张量)

仅包含一个数字的张量叫作标量(scalar,也叫标量张量、零维张量、0D 张量)。在 Numpy中,一个 float32 或 float64 的数字就是一个标量张量(或标量数组)。你可以用 ndim 属性来查看一个 Numpy 张量的轴的个数。标量张量有 0 个轴( ndim == 0 )。张量轴的个数也叫作阶(rank)。下面是一个 Numpy 标量。

    import numpy as np
   
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源启智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值