1 pytorch保存和加载模型的三种方法
PyTorch提供了三种方式来保存和加载模型,在这三种方式中,加载模型的代码和保存模型的代码必须相匹配,才能保证模型的加载成功。通常情况下,使用第一种方式(保存和加载模型状态字典)更加常见,因为它更轻量且不依赖于特定的模型类。
1.1 仅保存和加载模型参数(推荐)
1.1.1 保存模型参数
import torch
import torch.nn as nn
model = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))
# 保存整个模型
torch.save(model.state_dict(), 'sample_model.pt')
1.1.2 加载模型参数
import torch
import torch.nn as nn
# 下载模型参数 并放到模型中
loaded_model = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))
loaded_model.load_state_dict(torch.load('sample_model.pt'))
print(loaded_model)
显示如下:
Sequential(
(0): Linear(in_features=128, out_features=16, bias=True)
(1): ReLU()
(2): Linear(in_features=16, out_features=1, bias=True)
)
state_dict:PyTorch中的state_dict是一个python字典对象,将每个层映射到其参数Tensor。state_dict对象存储模型的可学习参数,即权重和偏差,并且可以非常容易地序列化和保存。
1.2 保存和加载整个模型
1.2.1 保存整个模型
import torch
import torch.nn as nn
net = nn.Sequential(nn.Linear(128, 16), nn.ReLU(), nn.Linear(16, 1))
# 保存整个模型,包含模型结构和参数
torch.save(net, 'sample_model.pt')
1.2.2 加载整个模型
import torch
import torch.nn as nn
# 加载整个模型,包含模型结构和参数
loaded_model = torch.load('sample_model.pt')
print(loaded_model)
显示如下:
Sequential(
(0): Linear(in_features=128, out_features=16, bias=True)
(1): ReLU()
(2

PyTorch提供了三种保存和加载模型的方法:1)保存和加载模型参数(推荐),通常用于常规模型存储;2)保存和加载整个模型,包含模型结构和参数;3)导出和加载ONNX格式模型,用于跨框架和硬件平台的模型交换。使用torch.save和torch.load函数可以方便地进行模型的序列化和反序列化,而state_dict则用于存储模型的参数。ONNX格式允许模型在不同深度学习框架间转换。
最低0.47元/天 解锁文章

4498

被折叠的 条评论
为什么被折叠?



