8.sklearn-模型保存

环境配置(必看)

Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。

头文件引用

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
import joblib

1.保存模型

代码工程

将模型信息保存到my_ridge.pkl文件中
def linear3():
    """
    岭回归对波士顿房价进行预测
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.预估器     alpha:正则化力度  max_iter:迭代次数
    estimator = Ridge(alpha=0.5, max_iter=10000)
    estimator.fit(x_train, y_train)

    # 保存模型
    joblib.dump(estimator, "my_ridge.pkl")

    # 5.得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 6.模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

在这里插入图片描述

生成文件

此文件中保存的是模型的信息

在这里插入图片描述

2.加载模型

代码工程

def read_model():
    """
    加载本地模型信息
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 加载模型
    estimator = joblib.load("my_ridge.pkl")
    # 得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

可以和上边保存模型的运行结果做对比,对比的结果是一样的,说明保存模型参数成功
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值