人脸识别(五)
5.1 前言
续上一篇博客《人脸识别(四)》,之前的人脸识别都是用Haar特征进行识别,这次换用DNN网络进行人脸识别。
5.2 准备工作
只是在之前博客的代码上略做改动,因此不必再多说什么了。
和博客[《人脸识别(三)》](https://blog.csdn.net/lrglgy/article/details/90112977)一样,不过这里需要多下载四个神经网络模型文件,它们分别是tensorflow神经网络模型文件[opencv_face_detector_uint8.pb](https://github.com/Roggu123/Algorithm/blob/master/Practice/CV/FaceDetection/FaceDetect_py/model/opencv_face_detector_uint8.pb)、模型配置文件[opencv_face_detector.pbtxt](https://github.com/Roggu123/Algorithm/blob/master/Practice/CV/FaceDetection/FaceDetect_py/model/opencv_face_detector.pbtxt),还有Caffe神经网络模型[res10_300x300_ssd_iter_140000_fp16.caffemodel](https://github.com/Roggu123/Algorithm/blob/master/Practice/CV/FaceDetection/FaceDetect_py/model/res10_300x300_ssd_iter_140000_fp16.caffemodel)、对应的模型配置文件[deploy.prototxt](https://github.com/Roggu123/Algorithm/blob/master/Practice/CV/FaceDetection/FaceDetect_py/model/deploy.prototxt)。
## 5.3 代码
# -*- coding: utf-8 -*-
# @Author 作者 : BogeyDa!!
# @FileName 文件名 : FaceDetect_Dnn.py
# @Software 创建文件的IDE : PyCharm
# @Blog 博客地址 : https://blog.youkuaiyun.com/lrglgy
# @Time 创建时间 : 2019-05-15 11:23
#
# @reference参考 : 博客:同上
# 代码:[face_detection_opencv_dnn.py](https://github.com/spmallick/learnopencv/blob/master/FaceDetectionComparison/face_detection_opencv_dnn.py)
# @Log 代码说明:利用DNN网络识别人脸,他人Demo
from __future__ import division
import cv2
import time
import sys
def detectFaceOpenCVDnn(net, frame):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], False, False)
net.setInput(blob)
detections = net.forward()
bboxes = []
flag = 0
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv2.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)
flag = 1
return frameOpencvDnn, bboxes, flag
if __name__ == "__main__" :
# OpenCV DNN supports 2 networks.
# 1. FP16 version of the original caffe implementation ( 5.4 MB )
# 2. 8 bit Quantized version using Tensorflow ( 2.7 MB )
# 选择进行人脸识别的网络:1.Tensorflow 2.Caffe
print("Please choose the net you prefer:")
print("1.Tensorflow 2.Caffe")
DNN = input("Input:\n")
if DNN == '2':
modelFile = "model/res10_300x300_ssd_iter_140000_fp16.caffemodel"
configFile = "model/deploy.prototxt"
net = cv2.dnn.readNetFromCaffe(configFile, modelFile)
else:
modelFile = "model/opencv_face_detector_uint8.pb"
configFile = "model/opencv_face_detector.pbtxt"
# net = cv2.dnn.readNetFromTensorflow(configFile, modelFile)
net = cv2.dnn.readNetFromTensorflow(modelFile, configFile)
conf_threshold = 0.7 #设定神经网络阈值
# 确定进行人脸识别的文件来源source, source=0表示摄像头,否则为指定路径的文件
source = 0
if len(sys.argv) > 1:
source = sys.argv[1]
# 定义人脸识别中涉及的参数及操作,
# cap--被识别文件,frame--视频帧,frame_count--视频帧数,tt_opencvDnn--进行人脸识别的总时间
# vid_writer--保存视频
cap = cv2.VideoCapture(source)
hasFrame, frame = cap.read()
vid_writer = cv2.VideoWriter('Results/Dnn/output-dnn-{}.avi'.format(str(source).split(".")[0]),cv2.VideoWriter_fourcc('M','J','P','G'), 15, (frame.shape[1],frame.shape[0]))
frame_count = 0
tt_opencvDnn = 0
reg = 0
# 通过循环读取视频每一帧并进行人脸识别
while(1):
hasFrame, frame = cap.read()
if not hasFrame:
break
frame_count += 1
t = time.time()
# flag表示是否识别出人脸
outOpencvDnn, bboxes, flag = detectFaceOpenCVDnn(net,frame)
if(flag==1):
reg += 1
tt_opencvDnn += time.time() - t
fpsOpencvDnn = frame_count / tt_opencvDnn
accuracy = reg/frame_count
label1 = "OpenCV DNN ; FPS : {:.2f}:".format(fpsOpencvDnn)
label2 = "OpenCV DNN ; Acc : {:.2f}".format(accuracy)
cv2.putText(outOpencvDnn, label1, (10,50), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 3, cv2.LINE_AA)
cv2.putText(outOpencvDnn, label2, (10,100), cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 3, cv2.LINE_AA)
cv2.imshow("Face Detection Comparison", outOpencvDnn)
vid_writer.write(outOpencvDnn)
if frame_count == 1:
tt_opencvDnn = 0
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print("The overall accuracy is:", accuracy)
cv2.destroyAllWindows()
vid_writer.release()
5.3 改进之处
这次使用神经网络进行人脸识别,效果要比利用Harr特征识别要好一些。例如在头部活动较快时,Harr特征很多时候是识别不出人脸的,而DNN基本都能识别出来。
这次的代码又在视频窗口中添加了识别准确率的显示,可以更好地与其它人脸识别方式进行对比,识别准确率显示如下(FPS是帧率,Acc是准确率):
5.4 参考
face-detection-opencv-dlib-and-deep-learning-c-python
face_detection_opencv_dnn.py