Given two words (beginWord and endWord), and a dictionary’s word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the word list
For example,
Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]
Return
[
[“hit”,”hot”,”dot”,”dog”,”cog”],
[“hit”,”hot”,”lot”,”log”,”cog”]
]
Note:
All words have the same length.
All words contain only lowercase alphabetic characters.
这道题目与Word Ladder I 相比难度有所提升,这道题目在leetcode所有题目中的通过率是最低的,其实并不是题目所涉及到的算法有多么的难,而是对时间要求非常的严格
思路
1. 先通过BFS 找到从start->end 最短路径中每个字符串的前驱集合(prve)
2. 在通过DFS对所有的路径进行枚举,这时候是从end开始逐步向前搜索知道start停止,所以最后结果还需要做一下reverse
代码
class Solution {
public:
vector<vector<string> > findLadders(string start, string end, unordered_set<string> &dict) {
vector<vector<string> > ans;
if(start == end) return ans;
unordered_set<string> visit;
//记录路径中每个节点的所有前驱节点
unordered_map<string, vector<string> > prev;
unordered_set<string> current, next;
current.insert(start);
visit.insert(start);
bool found = false;
while(!current.empty() && !found) {
//标记所有已经访问过的节点,避免重复访问
for(auto& str : current) {
visit.insert(str);
}
for(auto str : current) {
int n = str.size();
for(int i = 0; i < n; ++i) {
for(char ch = 'a'; ch <= 'z'; ++ch) {
if(ch == str[i]) continue;
string tmp = str;
tmp[i] = ch;
if(tmp == end) found = true;
//因为需要记录所有的前驱所以不能在里面设置visit, 并且用unordered_set是为了避免重复
if(dict.find(tmp) != dict.end() && visit.find(tmp) == visit.end()) {
next.insert(tmp);
prev[tmp].push_back(str);
}
}
}
}
current.clear();
swap(current, next);
}
if(found) {
vector<string> path;
dfs(ans, prev, path, start, end);
}
return ans;
}
void dfs(vector<vector<string> >& ans, unordered_map<string, vector<string> >& prev, vector<string>& path, string& start, string& end) {
path.push_back(end);
if(start == end) {
ans.push_back(path);
reverse(ans.back().begin(), ans.back().end());
path.pop_back();
return;
}
//逐层,逐个节点搜索
auto que = prev.find(end)->second;
for(auto& x : que) {
dfs(ans, prev, path, start, x);
}
path.pop_back();
}
};