const几点用法

2005年 01月08日
面向对象是C++的重要特性.

但是c++在c的基础上新增加的几点优化也是很耀眼的

就const直接可以取代c中的#define

以下几点很重要,学不好后果也也很严重

 

const
1. 限定符声明变量只能被读
   const int i=5;
   int j=0;
   ...
   i=j;   //非法,导致编译错误
   j=i;   //合法
2. 必须初始化
   const int i=5;    //合法
   const int j;      //非法,导致编译错误
3. 在另一连接文件中引用const常量
   extern const int i;     //合法
   extern const int j=10;  //非法,常量不可以被再次赋值
4. 便于进行类型检查
   用const方法可以使编译器对处理内容有更多了解。
   #define I=10
   const long &i=10;   /*dapingguo提醒:由于编译器的优化,使
      得在const long i=10; 时i不被分配内存,而是已10直接代入
      以后的引用中,以致在以后的代码中没有错误,为达到说教效
      果,特别地用&i明确地给出了i的内存分配。不过一旦你关闭所
      有优化措施,即使const long i=10;也会引起后面的编译错误。*/
   char h=I;      //没有错
   char h=i;      //编译警告,可能由于数的截短带来错误赋值。
5. 可以避免不必要的内存分配
   #define STRING "abcdefghijklmn/n"
   const char string[]="abcdefghijklm/n";
   ...
   printf(STRING);   //为STRING分配了第一次内存
   printf(string);   //为string一次分配了内存,以后不再分配
   ...
   printf(STRING);   //为STRING分配了第二次内存
   printf(string);
   ...
   由于const定义常量从汇编的角度来看,只是给出了对应的内存地址,
   而不是象#define一样给出的是立即数,所以,const定义的常量在
   程序运行过程中只有一份拷贝,而#define定义的常量在内存中有
   若干个拷贝。
6. 可以通过函数对常量进行初始化
   int value();
   const int i=value();
   dapingguo说:假定对ROM编写程序时,由于目标代码的不可改写,
   本语句将会无效,不过可以变通一下:
   const int &i=value();
   只要令i的地址处于ROM之外,即可实现:i通过函数初始化,而其
   值有不会被修改。
7. 是不是const的常量值一定不可以被修改呢?
   观察以下一段代码:
   const int i=0;
   int *p=(int*)&i;
   p=100;
   通过强制类型转换,将地址赋给变量,再作修改即可以改变const常量值。
8. 请分清数值常量和指针常量,以下声明颇为玩味:
   int ii=0;
   const int i=0;            //i是常量,i的值不会被修改
   const int *p1i=&i;        //指针p1i所指内容是常量,可以不初始化
   int  * const p2i=ⅈ     //指针p2i是常量,所指内容可修改
   const int * const p3i=&i; //指针p3i是常量,所指内容也是常量
   p1i=ⅈ                  //合法
   *p2i=100;                 //合法

关于C++中的const关键字的用法非常灵活,而使用const将大大改善程序的健壮性,参考了康建东兄的const使用详解一文,对其中进行了一些补充,写下了本文。

 

 


1.       const常量,如const int max = 100; 
优点:const常量有数据类型,而宏常量没有数据类型。编译器可以对前者进行类型安全检查,而对后者只进行字符替换,没有类型安全检查,并且在字符替换时可能会产生意料不到的错误(边际效应)


2.       const 修饰类的数据成员。如:
class A


{


    const int size;


    …


}


const数据成员只在某个对象生存期内是常量,而对于整个类而言却是可变的。因为类可以创建多个对象,不同的对象其const数据成员的值可以不同。所以不能在类声明中初始化const数据成员,因为类的对象未被创建时,编译器不知道const 数据成员的值是什么。如


class A


{


 const int size = 100;    //错误


 int array[size];         //错误,未知的size


}


const数据成员的初始化只能在类的构造函数的初始化表中进行。要想建立在整个类中都恒定的常量,应该用类中的枚举常量来实现。如


class A


{…


 enum {size1=100, size2 = 200 };


int array1[size1];


int array2[size2];


}


枚举常量不会占用对象的存储空间,他们在编译时被全部求值。但是枚举常量的隐含数据类型是整数,其最大值有限,且不能表示浮点数。


3.       const修饰指针的情况,见下式:


int b = 500;
const int* a = &           [1]
int const *a = &           [2]
int* const a = &           [3]
const int* const a = &     [4]

如果你能区分出上述四种情况,那么,恭喜你,你已经迈出了可喜的一步。不知道,也没关系,我们可以参考《Effective c++》Item21上的做法,如果const位于星号的左侧,则const就是用来修饰指针所指向的变量,即指针指向为常量;如果const位于星号的右侧,const就是修饰指针本身,即指针本身是常量。因此,[1]和[2]的情况相同,都是指针所指向的内容为常量(const放在变量声明符的位置无关),这种情况下不允许对内容进行更改操作,如不能*a = 3 ;[3]为指针本身是常量,而指针所指向的内容不是常量,这种情况下不能对指针本身进行更改操作,如a++是错误的;[4]为指针本身和指向的内容均为常量。


4.     const的初始化

先看一下const变量初始化的情况
1) 非指针const常量初始化的情况:A b;
const A a = b;

2) 指针const常量初始化的情况:


A* d = new A();
const A* c = d;
或者:const A* c = new A();
3)引用const常量初始化的情况:
A f;
const A& e = f;      // 这样作e只能访问声明为const的函数,而不能访问一           


般的成员函数;

    [思考1]: 以下的这种赋值方法正确吗?
    const A* c=new A();
    A* e = c;
    [思考2]: 以下的这种赋值方法正确吗?
    A* const c = new A();
    A* b = c;


5.     另外const 的一些强大的功能在于它在函数声明中的应用。在一个函数声明中,const 可以修饰函数的返回值,或某个参数;对于成员函数,还可以修饰是整个函数。有如下几种情况,以下会逐渐的说明用法:A& operator=(const A& a);
void fun0(const A* a );
void fun1( ) const; // fun1( ) 为类成员函数
const A fun2( );


1) 修饰参数的const,如 void fun0(const A* a ); void fun1(const A& a);
调用函数的时候,用相应的变量初始化const常量,则在函数体中,按照const所修饰的部分进行常量化,如形参为const A* a,则不能对传递进来的指针的内容进行改变,保护了原指针所指向的内容;如形参为const A& a,则不能对传递进来的引用对象进行改变,保护了原对象的属性。
[注意]:参数const通常用于参数为指针或引用的情况,且只能修饰输入参数;若输入参数采用“值传递”方式,由于函数将自动产生临时变量用于复制该参数,该参数本就不需要保护,所以不用const修饰。


[总结]对于非内部数据类型的输入参数,因该将“值传递”的方式改为“const引用传递”,目的是为了提高效率。例如,将void Func(A a)改为void Func(const A &a)


      对于内部数据类型的输入参数,不要将“值传递”的方式改为“const引用传递”。否则既达不到提高效率的目的,又降低了函数的可理解性。例如void Func(int x)不应该改为void Func(const int &x)


2)  修饰返回值的const,如const A fun2( ); const A* fun3( );
这样声明了返回值后,const按照"修饰原则"进行修饰,起到相应的保护作用。const Rational operator*(const Rational& lhs, const Rational& rhs)
{
return Rational(lhs.numerator() * rhs.numerator(),
lhs.denominator() * rhs.denominator());
}

返回值用const修饰可以防止允许这样的操作发生:Rational a,b;
Radional c;
(a*b) = c;

一般用const修饰返回值为对象本身(非引用和指针)的情况多用于二目操作符重载函数并产生新对象的时候。
[总结]


1.     一般情况下,函数的返回值为某个对象时,如果将其声明为const时,多用于操作符的重载。通常,不建议用const修饰函数的返回值类型为某个对象或对某个对象引用的情况。原因如下:如果返回值为某个对象为const(const A test = A 实例)或某个对象的引用为const(const A& test = A实例) ,则返回值具有const属性,则返回实例只能访问类A中的公有(保护)数据成员和const成员函数,并且不允许对其进行赋值操作,这在一般情况下很少用到。


2.       如果给采用“指针传递”方式的函数返回值加const修饰,那么函数返回值(即指针)的内容不能被修改,该返回值只能被赋给加const 修饰的同类型指针。如:


const char * GetString(void);


如下语句将出现编译错误:


char *str=GetString();


正确的用法是:


const char *str=GetString();


3.     函数返回值采用“引用传递”的场合不多,这种方式一般只出现在类的赙值函数中,目的是为了实现链式表达。如:


class A


{…


 A &operate = (const A &other);  //负值函数


}
A a,b,c;              //a,b,c为A的对象



a=b=c;            //正常


(a=b)=c;          //不正常,但是合法


若负值函数的返回值加const修饰,那么该返回值的内容不允许修改,上例中a=b=c依然正确。(a=b)=c就不正确了。
[思考3]: 这样定义赋值操作符重载函数可以吗?
const A& operator=(const A& a);


6.     类成员函数中const的使用
一般放在函数体后,形如:void fun() const;
任何不会修改数据成员的函数都因该声明为const类型。如果在编写const成员函数时,不慎修改了数据成员,或者调用了其他非const成员函数,编译器将报错,这大大提高了程序的健壮性。如:


class Stack


{


 public:


      void Push(int elem);


      int Pop(void);


      int GetCount(void) const;   //const 成员函数


 private:


      int m_num;


      int m_data[100];


};


int Stack::GetCount(void) const


{


  ++m_num;              //编译错误,企图修改数据成员m_num


  Pop();                    //编译错误,企图调用非const函数


  Return m_num;


}


7.       使用const的一些建议

1 要大胆的使用const,这将给你带来无尽的益处,但前提是你必须搞清楚原委;
2 要避免最一般的赋值操作错误,如将const变量赋值,具体可见思考题;
3 在参数中使用const应该使用引用或指针,而不是一般的对象实例,原因同上;
4 const在成员函数中的三种用法(参数、返回值、函数)要很好的使用;
5 不要轻易的将函数的返回值类型定为const;
6除了重载操作符外一般不要将返回值类型定为对某个对象的const引用;

[思考题答案]
1 这种方法不正确,因为声明指针的目的是为了对其指向的内容进行改变,而声明的指针e指向的是一个常量,所以不正确;
2 这种方法正确,因为声明指针所指向的内容可变;
3 这种做法不正确;
在const A::operator=(const A& a)中,参数列表中的const的用法正确,而当这样连续赋值的时侯,问题就出现了:
A a,b,c:
(a=b)=c;
因为a.operator=(b)的返回值是对a的const引用,不能再将c赋值给const常量。

 

一般常量和对象常量  
 
1.  一般常量  
 
一般常量是指简单类型的常量。这种常量在定义时,修饰符const可以用在类型说明符前,也可以用在类型说明符后。如:  
 
int  const  x=2;  
 
或  
 
const  int  x=2;  
 
定义或说明一个常数组可采用如下格式:  
 
<类型说明符>  const  <数组名>[<大小>]…  
 
或者  
 
const  <类型说明符>  <数组名>[<大小>]…  
 
例如:  
 
int  const  a[5]={1,  2,  3,  4,  5};  
 
2.  常对象  
 
常对象是指对象常量,定义格式如下:  
 
<类名>  const  <对象名>  
 
或者  
 
const  <类名>  <对象名>  
 
定义常对象时,同样要进行初始化,并且该对象不能再被更新,修饰符const可以放在类名后面,也可以放在类名前面。  
 
常指针和常引用  
 
1.  常指针  
 
使用const修饰指针时,由于const的位置不同,而含意不同。下面举两个例子,说明它们的区别。  
 
下面定义的一个指向字符串的常量指针:  
 
char  *  const  prt1  =  stringprt1;  
 
其中,ptr1是一个常量指针。因此,下面赋值是非法的。  
 
ptr1  =  stringprt2;  
 
而下面的赋值是合法的:  
 
*ptr1  =  "m";  
 
因为指针ptr1所指向的变量是可以更新的,不可更新的是常量指针ptr1所指的方向(别的字符串)。  
 
下面定义了一个指向字符串常量的指针:  
 
const  *  ptr2  =  stringprt1;  
 
其中,ptr2是一个指向字符串常量的指针。ptr2所指向的字符串不能更新的,而ptr2是可以更新的。因此,  
 
*ptr2  =  "x";  
 
是非法的,而:  
 
ptr2  =  stringptr2;  
 
是合法的。  
 
所以,在使用const修饰指针时,应该注意const的位置。定义一个指向字符串的指针常量和定义一个指向字符串常量的指针时,const修饰符的位置不同,前者const放在*和指针名之间,后者const放在类型说明符前。  
 
2.  常引用  
 
使用const修饰符也可以说明引用,被说明的引用为常引用,该引用所引用的对象不能被更新。其定义格式如下:  
 
const  <类型说明符>  &  <引用名>  
 
例如:  
 
const  double  &  v;  
 
在实际应用中,常指针和常引用往往用来作函数的形参,这样的参数称为常参数。  
 
在C++面向对象的程序设计中,指针和引用使用得较多,其中使用const修饰的常指针和常引用用得更多。使用常参数则表明该函数不会更新某个参数所指向或所引用的对象,这样,在参数传递过程中就不需要执行拷贝初始化构造函数,这将会改善程序的运行效率。  
 
下面举一例子说明常指针作函数参数的作法。  
 
#i nclude    
const  int  N  =  6;  
void  print(const  int  *p,  int  n);  
 
void  main()  
{  
int  array[N];  
for  (int  i=0;  i  cin>>array[i];  
print(array,  N);  
}  
 
void  print(const  int  *p,  int  n)  
{  
cout<<"{"<<*p;  
for  (int  i=1;  i  cout<<","<<*(p+i);  
cout<<"}"<  }  
   
 
常成员函数  
 
使用const关键字进行说明的成员函数,称为常成员函数。只有常成员函数才有资格操作常量或常对象,没有使用const关键字说明的成员函数不能用来操作常对象。常成员函数说明格式如下:  
 
<类型说明符>  <函数名>  (<参数表>screen.width/2)this.width=screen.width/2" vspace=2 border=0>  const;  
 
其中,const是加在函数说明后面的类型修饰符,它是函数类型的一个组成部分,因此,在函数实现部分也要带const关键字。下面举一例子说明常成员函数的特征。  
 
#i nclude    
class  R  
{  
public:  
R(int  r1,  int  r2)  {  R1=r1;  R2=r2;  }  
void  print();  
void  print()  const;  
private:  
int  R1,  R2;  
};  
 
void  R:screen.width/2)this.width=screen.width/2" vspace=2 border=0>rint()  
{  
cout<  }  
 
void  R:screen.width/2)this.width=screen.width/2" vspace=2 border=0>rint()  const  
{  
cout<  }  
 
void  main()  
{  
R  a(5,  4);  
a.print();  
const  R  b(20,  52);  
b.print();  
}  
   
 
该例子的输出结果为:  
 
5,4  
20;52  
 
该程序的类声明了两个成员函数,其类型是不同的(其实就是重载成员函数)。有带const修饰符的成员函数处理const常量,这也体现出函数重载的特点。  
 
常数据成员  
 
类型修饰符const不仅可以说明成员函数,也可以说明数据成员。  
 
由于const类型对象必须被初始化,并且不能更新,因此,在类中说明了const数据成员时,只能通过成员初始化列表的方式来生成构造函数对数据成员初始化。  
 
下面通过一个例子讲述使用成员初始化列表来生成构造函数。  
 
#i nclude    
class  A  
{  
public:  
A(int  i);  
void  print();  
const  int  &r;  
private:  
const  int  a;  
static  const  int  b;  
};  
 
const  int  A::b=10;  
A::A(int  i):a(i),  r(a)  
{  
}  
 
void  A:screen.width/2)this.width=screen.width/2" vspace=2 border=0>rint()  
{  
cout<  }  
 
void  main()  
{  
A  a1(100),  a2(0);  
a1.print();  
a2.print();  
}  
   
 
该程序的运行结果为:  
 
100:10:100  
 0:10:0  
 
在该程序中,说明了如下三个常类型数据成员:  
 
const  int  &  r;  
 
const  int  a;  
 
static  const  int  b;  
 
其中,r是常int型引用,a是常int型变量,b是静态常int型变量。  
 
程序中对静态数据成员b进行初始化。  
 
值得注意的是构造函数的格式如下所示:  
 
A(int  i):a(i),r(a)  
{  
}  
 
其中,冒号后边是一个数据成员初始化列表,它包含两个初始化项,用逗号进行了分隔,因为数据成员a和r都是常类型的,需要采用初始化格式。  

 

在C++中可以传对象引用,比用指针方便,但是为了避免在函数中对象被修改,需要加const限定符,相应的,在实现对象的成员函数时,也要添加cosnt,这样,因为只有cosnt成员函数才能被const对象调用

注意下面的函数test,里面调用了类A的get_name和get_path,所以get_name和get_path必须是const的,而get_path1不需要是const的

#i nclude <string.h>
#i nclude <string>
#i nclude <iostream>

using namespace std;

class A
{
 private:
  string name;
  string path;
 public:
  A(string _name,string _path){this->name=_name;this->path=_path;};
  const string get_name() const {return this->name;};
  string get_path() const {return this->path;};
};

void test(const A& testa)
{
 cout<<"A::name:"<<testa.get_name()<<endl;
 cout<<"A::path:"<<testa.get_path()<<endl;
}
int main()
{
 A a("test","path");
 test(a);
 return 1;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值