目标检测—RCNN算法详解

RCNN作为目标检测的里程碑,通过4步实现检测:1)候选区域生成,2)特征提取,3)类别判断,4)位置精修。使用深度网络和SVM分类器,提升了PASCAL VOC上的检测率。然而,其流程繁琐,训练时间长,计算重复问题突出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RCNN可以说是利用深度学习进行目标检测的开山之作,论文发表在2014年的CVPR,是R-CNN系列算法的开山之作。

1、算法流程

RCNN算法分为4个步骤:

  • 一张图像生成1K~2K个候选区域
  • 对每个候选区域,使用深度网络提取特征
  • 特征送入每一类的SVM 分类器,判别是否属于该类
  • 使用回归器精细修正候选框位置
    在这里插入图片描述

2、候选区域生成

使用了Selective Search1方法从一张图像生成约2000-3000个候选区域。基本思路如下:

  • 使用一种过分割手段,将图像分割成小区域
  • 查看现有小区域,合并可能性最高的两个区域。重复直到整张图像合并成一个区域位置
  • 输出所有曾经存在过的区域,所谓候选区域

候选区域生成和后续步骤相对独立,实际可以使用任意算法进行。

3、合并规则

优先合并以下四种区域:

  • 颜色(颜色直方图)相近的
  • 纹理(梯度直方图)相近的
  • 合并后总面积小的
  • 合并后,总面积在其BBOX中所占比例大的

4、特征提取

预处理

使用深度网络提取特征之前,首先把候选区域归一化成同一尺寸227×227。
此处有一些细节可做变化:外扩的尺寸大小,形变时是否保持原比例,对框外区域直接截取还是补灰。会轻微影响性能。

预训练

网络结构
基本借鉴Hinton 2012年

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值